Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (02): 100-106    DOI:
    
Self-assembled Peptide Nanofiber Scaffolds Induce Bone Marrow Mesenchymal Stem Cells Directional Differentiation
HE Ding-wen, XU Yan-jie, LIAO Xin-geng, YIN Ming
The Second Affiliated Hospital of NanChang University, Nanchang 330006,China
Download: HTML   PDF(427KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tissue engineering is a new idea of the modern reconstruction medicine. Biological scaffold and seed cells are two important elements for this new technology. Self-assembled peptides nanofiber scaffolds(SAPNS) are amphiphilic peptides,These peptides self-assemble into a new type of scaffold which has three-dimensional network structure under certain conditions. Its Properties such as structure, biological function, mechanics are similar to native extracellular matrix(ECM), and its internal functionalized modifications of epitope present in high concentrations on surface of nano-fiber and high- efficient selectively regulate the biological behavior of seed cells. Seed cells is the necessary condition for successful organization regeneration. Bone mesenchymal stem cells (BMSCs),due to its strong self-renewal and multiplex differentation potential,is the best candidate cell for tissue engineering. In vitro experiments showed that these specific functionalized modified of SAPNS can promote adhesion, proliferation, migration and directional differentiation of BMSCs with/without auxiliary factor.In vivo animal models found that the combination of SAPNS and BMSCs build up tissue engineering grafts can repair organic structure and function of the defect sites,so it have a good prospect in the restoration medicine. A review of SAPNS,self-assembled,BMSCs and directional differentiation was given.



Key wordsSelf-assembled peptides nanofiber scaffolds      Self-assemble      BMSCs directional differentiation     
Received: 26 October 2011      Published: 25 February 2012
ZTFLH:  Q819  
Cite this article:

HE Ding-wen, XU Yan-jie, LIAO Xin-geng, YIN Ming. Self-assembled Peptide Nanofiber Scaffolds Induce Bone Marrow Mesenchymal Stem Cells Directional Differentiation. China Biotechnology, 2012, 32(02): 100-106.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I02/100


[1] Shi M, Liu Z W, Wang F S.Immunomodulatory properties and therapeutic application of mesenchymal stem cells.Clin Exp Immunol, 2011,164(1):1-8.

[2] Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002,109(3):337-346.

[3] Woodbury D, Schwarz E J, Prockop D J, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000,61(4):364-370.

[4] Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 2005,106(2):756-763.

[5] Semino C E. Self-assembling peptides:from bio-inspired materials to bone regeneration. J Dent Res,2008,87 (7):606-616.

[6] Hartgerink J D, Beniash E, Stupp S I.Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials.Proc Natl Acad Sci U S A. 2002,99(8):5133-5138.

[7] Niece K L,Czeisler C,Sahni V,et al. Modification of gelation kinetics in bioactive peptide amphiphiles.Biomaterials, 2008,29(34):4501- 4509.

[8] Cui H, Muraoka T, Cheetham A G, et al.Self-assembly of giant peptide nanobelts.Nano Lett, 2009,9(3):945-951.

[9] Zaidel-Bar R, Cohen M, Addadi L, et al.Hierarchical assembly of cell-matrix adhesion complexes.Biochem Soc Trans, 2004,32(Pt3):416-420.

[10] Holmes T C, de Lacalle S, Su X, et al.Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.Proc Natl Acad Sci U S A, 2000,97(12):6728-6733.

[11] Sylvain V,Steve S,Haiyan G, et al.Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. PNAS, 2002,99(8): 5355-5360.

[12] 吴永超, 郑启新, 吴斌, 等. 异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸多肽纳米纤维对神经干细胞生物学行为的影响. 中华实验外科杂志, 2006, 23(11): 1398-1400. Wu Y C, Zheng Q X, Wu B, et al. Self-assembly of IKVAV nanofiher and its effect on neural stem cells. Chin Exp Surg, 2006,23(11):1398-1400.

[13] Skubitz A P, McCarthy J B, Zhao Q, et al.Definition of a sequence, RYVVLPR, within laminin peptide F-9 that mediates metastatic fibrosarcoma cell adhesion and spreading. Cancer Res, 1990,50:7612-7622.

[14] Tysseling-Mattiace V M, Sahni V, Niece K L, et al.Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.J Neurosci, 2008,28(14):3814-3823.

[15] Pierschbacher M D, Ruoslahti E.Variants of the cell recognition site of fibronectin that retain attachment-promoting activity.Proc Natl Acad Sci U S A, 1984,81(19):5985-5988.

[16] Anderson J M, Kushwaha M, Tambralli A, et al.Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules, 2009,10:2935-2944.

[17] Harbers G M, Healy K E. The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A, 2005,75:855-869.

[18] Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem, 2001,129:133-138.

[19] Tanaka T. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds, J Biomed Mater Res Part A, 2009,91: 428-435.

[20] Kopesky P, Vanderploeg E, Sandy J, et al. Self-assembling peptide hydrogels modulate in vitro chondro-genesis of bovine bone marrow stromal cells. Tissue Eng Part A 2010;16:465-477.

[21] Chow L W, Wang L J, Kaufman D B, et al. Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets.Biomaterials,2010, 31(24):6154-6161.

[22] 吴斌,郑启新,吴永超,等.纳米纤维凝胶材料IKVAV多肽的自组装及其与骨髓基质干细胞的相容性研究.中国生物医学工程学报,2008,27(3):471-475. Wu B, Zheng Q X, Wu Y C, et al. Self-assembly of IKVAV peptide nanofiber hydrogels and its biocompatibility studies combined with bone marrow stern cells. Chinese Journal of Biomedical Engineering, 2008,27(3):471-475.

[23] 吴斌,吴永超,郑启新,等.骨髓基质干细胞在IKVAV多肽纳米纤维凝胶表面增殖、黏附及向神经细胞诱导分化的研究.中华创伤骨科杂志,2007,9(8):740-744. Wu B, Wu Y C, Zheng Q X, et al. The proliferation, adhesion and induced differentiation into neurocytes of bone marrow stromal cells on IKVAV peptide nanofiber gel. Chin J Orthop Trauma, 2007,9(8):740-744.

[24] 李长文,郑启新.骨髓间充质干细胞结合多肽自组装支架材料治疗脊髓损伤的实验研究.华中科技大学博士学位论文.2009. Li C W, Zheng Q X. Experimental research of combine mesenchymal stem cells and self-assembly peptide scaffold for spinal cord injury treatment. Huazhong University of Science and Technology, 2009.

[25] Wu B,Zheng Q X,Yongchao W U, et al.Effect of IKVAV peptide nanofiber on proliferation.adhesion and differentiation into neurocytes of bone marrow stromal cells. J Huazhong Univ Sci Technol, 2010,30(2):178-182.

[26] Ikeda R,Fujioka H,Nagura I, et al.The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop, 2009,33:821-828.

[27] Miller R E,Grodzinsky A J,Vanderploeg E J, et al.Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair.Osteoarthritis Cartilage, 2010,18(12): 1608 -1619.

[28] Kisiday J D, Kopesky P W, Evans C H,et al.Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures.J Orthop Res, 2008,26(3):322-331.

[29] Kopesky P W,Vanderploeg E J,Sandy J S,et al.Self- assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A, 2010,16(2):465-477.

[30] Shah R N, Shah N A, Del Rosario Lim M M, et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci U S A, 2010,107(8):3293-3298.

[31] Anderson Joel M,Meenakshi Kushwaha,Ajay Tambralli, et al. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules, 2009,10(10): 2935-2944.

[32] Anderson J M, Vines J B, Patterson J L, et al. Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium. Acta Biomater, 2011,7(2):675-682.

[33] Hosseinkhani H, Hosseinkhani M, Kobayashi H.Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers.Biomed Mater, 2006,1(1):8-15.

[34] Ozeki M, Kuroda S, Kon K, et al.Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel:in vitro and in vivo studies. J Biomater Appl, 2011,25(7):663-684.

[35] Yoshimi R,Yamada Y,Ito K, et al.Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering.J Craniofac Surg, 2009,20(5):1523-1530.

[36] Leah E,Gary J,Deborah J,et a1.Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells.Stem Cells,2004,22:849-860.

[1] SHEN Ting-ting, ZHANG Guang-ya. Self-assembly Mechanism and Biological Applications of Smart Peptides[J]. China Biotechnology, 2014, 34(5): 87-91.
[2] SHAO Ming-xiang, GONG Min, TANG Li-da. Utility of the Self-assembling Peptides as Novel Drug Formulations[J]. China Biotechnology, 2013, 33(8): 118-126.
[3] HUO Run-lan, LUO Yan-feng, LI Yan, YAN Wei-wei, XING Juan, LIN Fu-chun, WANG Yuan-liang. Surface Chemistry Modulates Fibronectin Conformation and Control Cell Behavior[J]. China Biotechnology, 2011, 31(7): 32-37.