Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (11): 70-74    DOI:
    
Optimization of Fermentation Process for Gibberellic Acid Production Coupling with Adsorptive Extraction by Macroporous Resin
WANG Wei, LI Zhong-hai, LI Ji-li, ZENG Bo-quan
College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
Download: HTML   PDF(634KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The mechanism of end product inhibition exists in gibberellin acid (GA3) biosynthesis of mycelium of Gibberella fujikuroi. Fermentation technology coupling with resin extraction would decrease the product inhibition and enhance the efficiency of GA3 production. Four macroporous resins were tested for their static adsorption/desorption performance towards GA3, and D-100 resin was selected as adsorbent through the method compared the adsorption capacity of the GA3 and elution efficiency. The facts about addition time and the amount of resin were studied by regression and response surface analysis. The experimental results showed that the optimal addition time and amount of resin were 70.75h and 2.02%, accordingly. The total gibberellin productivity and average specific production rate in the fermentation was 221.75mg and 0.96mgGA3/(gBiomass穐), respectively. Using the coupling technology in the fermentation, the gibberellin production increased by 149.6% compared with controls without D-100 resin.

Key wordsGibberellic acid      Macroporous resin      Adsorption      Coupling technology     
Received: 03 May 2012      Published: 25 November 2012
ZTFLH:  Q815  
Cite this article:

WANG Wei, LI Zhong-hai, LI Ji-li, ZENG Bo-quan. Optimization of Fermentation Process for Gibberellic Acid Production Coupling with Adsorptive Extraction by Macroporous Resin. China Biotechnology, 2012, 32(11): 70-74.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I11/70

[1] 储炬, 李友荣. 现代工业发酵调控学. 北京:化学工业出版社, 2002.247. Chu J, Li Y R. Modern Concepts of Industrial Fermentation. 2rd. Beijing: Chemical Industry Press, 2002.247.
[2] 王卫, 李忠海, 黎继烈, 等. 以脂肪酶为指标筛选赤霉素高产菌株的研究. 工业微生物, 2011,41 (1):51-54. Wang W, Li Z H, Li J L, et al.Screening of high yield gibberellin-producing strain from lipase-producing mutants. Industrial Microbiology, 2011,41 (1):51-54.
[3] 单世平, 夏立秋, 丁学知, 等. 改组的最新动态及应用前景. 中国生物工程杂志, 2009, 29(10):92-97. Shan S P, Xia L Q, Ding X Z, et al. Research on the latest developments and application of DNA shuffling. China Biotechnology, 2009, 29(10):92-97.
[4] 贾波. 始旋链霉菌普那霉素发酵及与分离耦合工艺研究.杭州:浙江大学材料与化学工程学院,2007. Jia B. Study on pristinamyeins fermentation and the integrated fermentation separation proeess by Streptonwces pristinaes Piralis. Hanghou:Zhejiang University, Institute of Bioengineering, 2007.
[5] Hollmann D, Switalsk J, Geipel S, et al. Extractive fermentation of gibberellic acid by Gibberella fujikuroi. J Ferment Bioeng, 1995, 79(6):594-600.
[6] Stentelaire C, Lesage-Meenssen L, Oddou J, et al. Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus. J Bioscience Bioeng, 2000, 89(3):223-228.
[7] Liu S R, Wu Q P, Zhang J M, et al. Production of e-poly-L-lysine by Streptomyces sp. using resin-based, in situ product removal. Biotechnol Lett, 2011, 33:1581-1585.
[8] Escamilla E M, Dendooven L, Magana I P, et al. Optimization of gibbeerllic acid production by immobilized Gibbeerallu fjkuiori mycelium in fluidized bioreactors. J of Biotechnol, 2000, 76:147-155.
[9] Chávez-Parga M C, González-Ortega Q, Sánchez-Cornejo G, et al. Mathematical description of bikaverin production in a fluidized bed bioreactor. World Journal of Microbiology & Biotechnology, 2005, 21:683-688.
[10] Oller-López J L, Avalos J, Barrero A F, et al. Improved GA1 production by Fusarium fujikuroi. Applied Microbiol Biotechnol, 2003,63:282-285.
[11] 王卫, 李忠海, 黎继烈, 等. 海藻酸钙固定赤霉菌菌丝产素的研究. 中国生物工程杂志, 2012,32(1):36-41. Wang W, Li Z H, Li J L, et al. Study on Gibberellin production by immobilized Gibberella fujikuroi in calcium alginate. China Biotechnology, 2012,32(1):36-41.
[1] LI Cong-zhen, MAO Ning. Purification of Cordycepin from Medium Residues by Macroporous Resin[J]. China Biotechnology, 2014, 34(1): 90-94.
[2] WANG Wei, LI Zhong-hai, LI Ji-li, ZENG Bo-quan. Optimization of Fermentation Process for Gibberellic Acid Production Coupling with Adsorptive Extraction by Macroporous Resin[J]. China Biotechnology, 2012, 32(11): 70-74.
[3] ZHAO Yu-qing, LI Jin, ZHOU Guang-qi, REN Zheng-yu, YANG Hong-ze, SUN Tian-zhu, XING Yan-jie. Study on the Specific Adsorption of Ni2+ for Nickel Bacteria in Nickel-containing Wastewater[J]. China Biotechnology, 2012, 32(11): 92-97.
[4] ZHAO Yu-qing, LI Jin, ZHOU Guang-qi, REN Zheng-yu, YANG Hong-ze, SUN Tian-zhu, XING Yan-jie. Study on the Specific Adsorption of Ni2+ for Nickel Bacteria in Nickel-containing Wastewater[J]. China Biotechnology, 2012, 32(11): 92-97.
[5] MA Hong-mei, ZHANG Gui-feng, LI Chun, KONG Ying-jun, GAO Fei, HU Tao, MA Guang-hui, SU Zhi-guo. Effect of Interfacial Ligands on the Absorption Behavior of BSA[J]. China Biotechnology, 2012, 32(07): 53-59.
[6] LI An-Lu, TUN Qi-Ci, WU Zhen-Jun, DAN Nan, MO Gong-Gui. Study on Adsorption Properties of Lycopene from the Broth of Blakeslea trispora by Macroporous Resin[J]. China Biotechnology, 2010, 30(04): 71-76.
[7] . Novel progress in separation and purification technology of nattokinase[J]. China Biotechnology, 2008, 28(1): 119-123.