Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 60-66    DOI: Q785 Q786
    
Clone of Cu/Zn-Superoxide Dismutase Gene from Kluveromces lactis and Its expreesion in Saccharomyces cerevisiae
LI Wen-feng1,2,JI Jing1,WANG Gang1,NIU Bao-long1,WANG Hai-yong1,2
1.School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072, China
2.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(687KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

According to Genbank Kluyveromyces lactis Cu/Zn-SOD gene sequence primers were designed;the Cu / Zn-SOD gene were obtained by PCR amplification. Driven by the PGK1 promoter, the gene fused to the fluorescent reporter gene GFP were used to construct recombinant plasmid YEplac195-PSGA and YCplac33-PSGA, and transformed into yeast (Saccharomyces cerevisiae) W303α strain. By colony PCR and fluorescence microscopic observation we confirmed that the Cu / Zn-SOD gene of Kluyveromyces lactis was successfully expressed in W303α strain.20 mM paraquat were added to the positive transformants before fermentation. SOD activity and total activity were respectively 6.7 times and 4.7 times as high as those without paraquat in the biomass of the fermentation medium. To further investigate the impact of the Cu / Zn-SOD gene on the host sod1Δ strain EG118, heat shock treatment was applied. Results show that heat strikes capability of host tolerance in the following order of EG118 (YEplac195-PSGA)> EG118 (YCplac33-PSGA)> EG118. The results is not only necessary for the fermentation industry to prevent bacterial fermentation in the aging strains and furthermore, an enhanced capacity to provide some theoretical guidance, but also a foundamental of in vitro directed evolution of the Cu/Zn-SOD.



Key wordsCu/Zn-Superoxide Dismutase      Saccharomyces cerevisiae      Expression      Paraquat      aging     
Received: 12 April 2010      Published: 25 August 2010
Cite this article:

LI Wen-Feng, JI Jing, WANG Gang, NIU Bao-Long, WANG Hai-Yong. Clone of Cu/Zn-Superoxide Dismutase Gene from Kluveromces lactis and Its expreesion in Saccharomyces cerevisiae. China Biotechnology, 2010, 30(08): 60-66.

URL:

https://manu60.magtech.com.cn/biotech/Q785 Q786     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/60

[1] Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem, 1995, 64:97112. 
[2] Miller A F. Superoxide Processing. In Coordination Chemistry in the Biosphere and Geosphere. Edited by Que L Jr, Tolman W. Oxford, Amsterdam, New York and Tokyo: Pergamon, 2003. 479506. 
[3] Raimondi S, Uccelletti D, Matteuzzi D, et al. Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol, 2008, 77:12691277. 
[4] Ping Y. Enhancing survival of Escherichia coli by increasing the periplasmic expression of Cu,Zn superoxide dismutase from Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2007, 76:867871. 
[5] Badawi G H, Yamauchi Y, Shimada E, et al. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science, 2004, 166:919928. 
[6] Cabiscol E, Ros J, in: DalleDonne I, Scaloni A, Butterfield D A. Oxidative Damage to Proteins: Structural Modifications and Consequences in Cell Function, Redox Proteomics.Hoboken New Jersey: Wiley Interscience, 2006.247281. 
[7] Marklund S. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 1974, 47:469474. 
[8] Gralla E B, Valentine J S. Null mutants of Saccharomyces cerevisiae Cu/Zn superoxide dismutase: characterization and spontaneous mutation rates, J Bacteriol, 1991, 173:59185920. 
[9] Scandalios J G. The rise of ROS. Trends in biochemical. Sciences, 2002, 27:483486. 
[10] Angelova M B. Heatshockinduced oxidative stress and antioxidant response in Aspergillus niger 26. Canadian Journal of Microbiology, 2008, 54(12):977983. 
[11] Reddy M V, Gangadharam PR. Heat shock treatment of macrophages causes increased release of superoxide anion. Infect Immun, 1992, 60:23862390. 
[12] Hae Yong Yoo, Shin Seog Kim, Hyune Mo Rho. Overexpression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. J Biotechnol, 1999, 68:2935.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[4] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[5] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[6] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[7] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[8] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[9] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[10] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[11] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[12] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[13] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[14] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[15] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.