Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (07): 127-133    DOI:
    
Research progress in genetic engineering for cellulosic ethanol
Download: HTML   PDF(428KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Abstract Lignocellulosic biomass is a promising new source of renewable biofuel that can help reduce reliance on fossil fuels.Researches have been done over the last decades.And considerable progress has been made.The abilities and pathways of natural microorganisms to produce ethanol from cellulose are different.So the researches of reconstructing and recombinating the useful genes from different strains are of great significance to improve the yield of ethanol production and reduce the cost.The characteristics and mechanisms of natural ethanologenic strains and the research progress of constructing recombinant strains was introduced and also analyzed the perspectives and challenges.

Key wordscellulose;ethanol;genetic engineering     
Received: 08 January 2009      Published: 28 July 2009
ZTFLH:  中图分类号Q78  
Cite this article:

JIANG Xi-Ran, LI Wen-Li. Research progress in genetic engineering for cellulosic ethanol. China Biotechnology, 2009, 29(07): 127-133.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I07/127

[1] Schmer M R, Vogel K P, Mitchell R B, et al. Net energy of cellulosic ethanol from switchgrass. PNAS,2008,105(2):464~469 [2] Brett C, Waldron K. Physiology and Biochemistry of Plant Cell Walls. London :Chapman and Hall,1990.4~57 [3] Anjali M, Sriappareddy T, Kazunari U, et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol,2009,82:1067~1078 [4] Nigam J N. Development of xylosefermenting yeast pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehycrolysate. Appl Microbiol,2001,90:208~215 [5] Bjorn J,Barbel H H.The nonoxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Research,2002,2: 277~282 [6] Wahlbom C F,Van Zyl W H,Jonsson L J.Generation of the improved recombinant xyloseutilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res,2003,3(3):319~326 [7] Akinori M,Hiroyuki I,Katsuji M, et al. Bioethanol production performance of five recombinant strains of laboratory and industrial xylosefermenting Saccharomyces cerevisiae. Bioresource Technology,2009, 100:2392~2398 [8] 李敏,马涛,生举正,等.稳定高效表达木糖还原酶基因工业酿酒酵母的构建及木糖醇发酵的初步研究.食品与发酵工业,2006,32(1):1~5 Li M,Ma T,Sheng J Zh, et al. Food and Fermentation Industry, 2006,32(1):1~5 [9] 袁振宏,潘亚平,刘继开,等.代谢木糖和葡萄糖的重组酿酒酵母的构建.微生物学通报,2006,33(3):104~108 Yuan Zh H,Pan Y P,Liu J K, et al.Microbiology Bulletin, 2006,33(3):104~108 [10] Zhang J X,Tian S,Zhang Y Z,et al.Construction of a recombinant S.cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Appl Biochem Biotechnol,2008,150:185~192 [11] Kaisa K,Barbel H H,Marie F G G.Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast,2005,22:359~368 [12] 李永建,严明,丁莉,等.在酿酒酵母中共表达XYLA和XKS 1基因后利用木糖的初步研究.生物加工过程,2006,4(4):66~69 Li Y J,Yan M,Ding L,et al. Biological Process, 2006,4(4):66~69 [13] Traef K L, Otero Cordero R R, Van Zyl W H,et al.Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Applied and Environmental Microbiology,2001,12:5668~5674 [14] Chambergo F S,Bonaccorsi E D,Ferreira A J S,et al.Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. The Journal Of Biological Chemistry,2002,16:13983~13988 [15] Hikaru N,Katsunori O,Tomoko O,et al.Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol,2009,DOI 10.1007/s0025300919013 [16] Hikaru N,Katsunori O,Ryota K,et al.Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol,2008,81:681~689 [17] Qin Y Q,Wei X M,Liu X M,et al.Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expression and Purification,2008,58(1):162~167 [18] 王利英,刘一,杨登峰,等.绿色木霉葡聚糖内切酶cDNA基因的克隆及其在酿酒酵母中的表达.广西科学,2007,14(3):315~319 Wang L Y,Liu Y,Yang D F,et al. Guangxi Science, 2007,14(3):315~319 [19] 王瑾,邬敏辰,周晨妍.内切葡聚糖酶基因在大肠杆菌与毕赤酵母中的表达.生物技术通报,2008,3:110~114 Wang J,Wu M Ch,Zhou Ch Y.Biotechnology Bulletin, 2008,3:110~114 [20] 张煜,刘刚,余少文,等.里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达.菌物学报,2005,24(3):367~375 Zhang Y,Liu G,Yu Sh W,et al.Acta Fungi Sinica, 2005,24(3):367~375 [21] Junji I,Yasuya F,Mitsuyoshi U, et al.Improvement of cellulosedegrading ability of a yeast strain displaying Trichoderma reesei endoglucanaseⅡ by recombination of cellulosebinding domains. Biotechnol,2004,20:688~691 [22] Dai Z,Hooker B S,Quesenberry R D, et al.Expression of Trichoderma reesei exocellobiohydrolase I in transgenic tobacco leaves and calli. Applied Biochemistry and Biotechnology,1999(77):689~699 [23] La Grange D C,Pretorius I S,Van Zyl W H.Expression of a Trichoderma reesei betaxylanase gene (XYN2) in Saccharomyces cerevisiae. Applied and Environmental Microbiology,1996,62(3):1036~1044 [24] 欧阳嘉,王向明,张清,等.里氏木霉木聚糖酶XYNⅡ基因在毕赤酵母中的分泌表达.林产化学与工业,2007,27(5):83~88 Ou Y J,Wang X M,Zhang Q,et al.Chemisitry and Industry of Forest Products, 2007,27(5):83~88 [25] Jun H,Bing Y,Zhang K Y, et al.Expression of a Trichoderma reesei βxylanase gene in Escherichia coli and activity of the enzyme on fiberbound substrates. Protein Expression and Purification,2009,67:1~6 [26] Tung M Y,Chang C T,Chung Y C.Biochemical properties of genetic recombinant xylanase II. Appl Biochem Biotechnol,2007,136(1):1~16 [27] 张梁,石贵阳,王正祥,等.酿酒酵母GPD1中整合表达纤维二糖酶基因用于纤维素酒精发酵的研究.西北农林科技大学学报(自然科学版),2006,34(10):164~170 Zhang L,Shi G Y,Wang Z X,et al.Journal of Northwest A&F University(Natural Science), 2006,34(10):164~170 [28] 张梁,洪剑辉,石贵阳.里氏木霉bgl1基因的克隆及其在酿酒酵母中的表达.酿酒科技,2006,9:17~20 Zhang L,Hong J H,Shi G Y.Vintage Science and Technology, 2006,9:17~20 [29] Sprenger G A.Carbohydrate metabolism in Zymomonas mobilis:a catabolic highway with some scenic routes. FEMS Microbiology Letters,1996,145:301~307 [30] Afendra A S, Drainas C.Expression and stability of a recombinant plasmid in Zymomonas mobilis and Escherichia coli. J Gen Microbiol,1987,133(1):127~134 [31] 邹少兰,高卫华,刘成,等.运动发酵单胞茵和大肠杆菌间穿梭质粒的构建.南开大学学报(自然科学版),2006,39(3):23~28 Zou S L,Gao W H,Liu C,et al. Journal of Nankai University(Natural Science), 2006,39(3):23~28 [32] 陆坚,韦宇拓,黄鲲,等.运动发酵单孢菌丙酮酸脱羧酶基因的克隆及在大肠杆菌中的表达.广西大学学报(自然科学版),2003,28(1):32~35 Lu J,Wei Y T,Huang K,et al. Journal of Guangxi University(Natural Science), 2003,28(1):32~35 [33] 陆坚,韦宇拓,黄鲲,等.运动发酵单孢菌乙醇脱氢酶基因的克隆及在大肠杆菌中的表达.工业微生物,2004,34(1):17~19 Lu J,Wei Y T,Huang K,et al.Industrial Micobiology, 2004,34(1):17~19 [34] Feldmann S D,Sahm H,Sprernger G A.Pentose metabolism in Zymomonas mobilis wildtype and recombinant strains. Applmicrobial Biotechnol,1992,38:354~361 [35] Zhang M,Eddy C,Deanda K,et al.Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science,1995,267:240~243 [36] K Deanda,M Zhang,C Eddy,et al.Development of an arabinosefermenting Zymomonas mobilis strain by metabolic pathway engineering. Applied and Environmental Microbiology,1996,62(12):4465~4470 [37] Spiridonov N A, Wilson D B.Regulation of biosynthesis of Individual cellulases in Thermomonospora fusca. Journal of Bacteriology,1998.3529~3532 [38] Lao G, Ghangas G S,Jung E D,et al.DNA sequences of three β1,4endoglucanase genes from Thermomonospora fusca. Journal of Bacteriology,June 1991,11:3397~3407 [39] Athanasios L,Konstantinos M,Natalia I,et al.Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca Y X. Journal of Bacteriology,2007,6:2477~2486 [40] Ziegelhoffer T, Will J,AustinPhillips S.Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.),potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Molecular Breeding,1999,5:309~318 [41] Yu L X,Gray B N, Rutzke C J,et al.Expression of thermostable microbial cellulases in the chloroplasts of nicotinefree tobacco. Journal of Biotechnology,2007,131:362~369 [42] Gray B N, Ahner B A,Hanson M R.HighLevel bacterial cellulase accumulation in chloroplasttransformed tobacco mediated by downstream box fusions. Biotechnology and Bioengineering,2009,102:1045~1054 [43] Frank K A,Guillermo C K.Cellulosic ethanol production using the naturally occurring xylosefermenting yeast,Pichia stipitis. Biotechnol Lett,2008,30:1515~1524 [44] Zhang L Y,Zhang L,Ding Z,et al.Metabolic engineering for improving ethanol fermentation of xylose by wild yeast.Chinese Journal of Biotechnology,2008,24(6):950~956 [45] 周逢云,汤斌,张庆庆,等.休哈塔假丝酵母发酵木糖产乙醇的研究.安徽工程科技学院学报,2007,22(4):25~28 Zhou F Y,Tang B,Zhang Q Q,et al. Journal of Anhui Science & Technology University, 2007,22(4):25~28 [46] Waqner I D,Zhao W,Zhang C L,et al.Thermoanaerobacter uzonensis sp.nov.,an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera,Kamchatka,Far East Russia. Int J Syst Evol Microbiol,2008,58:2565~2573 [47] Fong G F,Svenson C G,Nakasugi K,et al.Isolation and characterization of two novel ethanol tolerant acultative aerobic thermophilic bacteria strains from waste compost.Extremophiles,2006,10:363~372 [48] Georgieva T I,Mikkelsen M G, Ahring B K.High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BGlL1. Central European Journal of Biology,2007,2(3):364~377 [49] Burdette D S,Jung S H,Shen G J,et al.Physiological function of alcohol dehydrogenases and longchain(C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Applied and Environmental Microbiology,2002,68(4):1914~1918 [50] 彭惠,毛忠贵,武国干,等.嗜热乙醇杆菌中醇脱氢酶E的功能与调控.食品与生物技术学报,2008,27(2):84~87 Peng H,Mao Z G,Wu G G,et al. Journal of Food Science and Biotechnology, 2008,27(2):84~87 [51] 彭惠,高毅,肖亚中.一株高乙醇耐受的嗜热细菌Anoxybacillus sp.WP06的性质研究.生物工程学报,2008,24(6):1117~1120 Peng H,Gao Y,Xiao Y Z. Chinese Journal of Biotechnology, 2008,24(6):1117~1120 [52] Shaw A J,Podkaminer K K,Desai S G,et al.Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS,2008,105(37):13769~13774 [53] 李学风,潘亚平,张晶,等.乙醇发酵重组大肠杆菌的构建—运动发酵单孢菌pdc基因在大肠杆菌中的高效表达.太阳能学报,2006,27(11):1120~1123 Li X F,Pan Y P,Zhang J,et al. Journal of Solar Energy, 2006,27(11):1120~1123 [54] 孙金凤,徐敏,张峰,等.利用木糖和葡萄糖合成乙醇的新型重组大肠杆菌的研究.微生物学报,2004,44(5):600~604 Sun J F,Xu M,Zhang F,et al.Acta Microbiologica Sinica, 2004,44(5):600~604 [55] Yomano L P,York S W,Zhou S,et al.Reengineering Escherichia coli for ethanol production. Biotechnol Lett,2008,30:2097~2103 [56] Qiao J,Dong B,Li Y,et al.Cloning of a beta1,31,4Glucanase Gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Appl Biochem Biotechnol,2008,152(2):334~342 [57] Hideshi Y,Dai S,Keiko Y,et al.Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Applied and Environmental Microbiology,2007,73(8):2592~2599 [58] Liu S Q,Dien B S,Cotta M A.Functional expression of bacterial Zymobacter palmae pyruvate decarboxylase gene in Lactococcus lactis. Current Microbiology,2005,50:324~328
[1] HE Ying-1, HONG Ju-1, 2, ZHANG Zhi-Cheng-1, LIU Xue-Ting-1, HONG An-1, 2. Prokaryotic Expression of Soluble Ectodomain of Human Fibroblast Growth Factor Receptor 2IIIc and Its Inhibitory Effect on the Proliferation of DU145 Cells[J]. China Biotechnology, 2009, 29(07): 7-11.
[2] HAO Da-Cheng-1, 2, XIAO Pei-Gen-2. Functional expression of human cytochrome P450 enzymes in escherichia coli[J]. China Biotechnology, 2009, 29(07): 94-101.
[3] MO Yan, LI Li-Ling, XIE Qiu-Ling, GUO Chu-Jun, QIN Li, ZHANG Yong-Cang, CHEN Xiao-Jia. Expression of recombinant sPDGFRα-Fc in CHO and its anti-proliferation analysis[J]. China Biotechnology, 2009, 29(07): 1-6.
[4] LIU Xiao-Di, DU Ning, GUO Li-Hong. Construction of streptococcus mutans comE mutant strain using In-frame deletion system[J]. China Biotechnology, 2009, 29(07): 80-86.
[5] ZHANG Yu-Xiu-1, WANG Jiao-1, WANG Dan-2, JI Feng-1. Advancement in genetic engineering for production of succinic acid by escherichia coli[J]. China Biotechnology, 2009, 29(07): 108-117.
[6] CAO Hong-Guo- Yan-Hui-Qun- Zhang-Wei-Qin- Chen-Chao- Huang-Wei-Ling. Expression of Nanog gene with the mediation of lentiviral vector in mouse ES cells[J]. China Biotechnology, 2009, 29(05): 23-27.