Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (2): 118-128    DOI: 10.13523/j.cb.20140219
    
Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production
LI Yun-cheng, TANG Yue-qin, KIDA Kenji
1. College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China;
2. College of Architecture and Environment, Sichuan University, Chengdu 610207, China
Download: HTML   PDF(762KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Bioethanol is considered as the most important alternative of fossil fuel. Saccharomyces cerevisiae is the most effective ethanol-producing microorganism widely used in the current bioethanol industry. It is very important and urgent to construct strains with excellent inhibitor tolerance and pentose fermenting ability for the production of bioethanol from lignocellulosic biomass. Since the OMICS technologies, including genomics, proteomics, transcriptomics, metabolomics and fluxomics, can reveal the laws of life activities of strains in different level from genotype to phenotype, it has been broadly applied in construction of engineered strains, especially in the identification of target genes, the optimization of metabolic pathway and the reveal of metabolic mechanism. The application of OMICS makes strain construction works more targeted and clarity, and the breeding cycle is greatly shortened.The application and recent progress of OMICS in construction of Saccharomyces cerevisia strains for bioethanol production are discussed.

Key wordsFuel ethanol      Saccharomyces cerevisiae      Strain construction      OMICS technology     
Received: 17 October 2013      Published: 25 February 2014
ZTFLH:  Q815  
Cite this article:

LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production. China Biotechnology, 2014, 34(2): 118-128.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140219     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I2/118

[1] Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol, 2009, 84 (1): 37-53.
[2] Castrillo J I, Oliver S G. Yeast Systems Biology: Methods and Protocols [M]. New York: Humana Press, c/o Springer Science+ Business Media, 2011.
[3] Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol J, 2012, 7 (1): 34-46.
[4] 赵心清, 白凤武, 李寅. 系统生物学和合成生物学研究在生物燃料生产菌株改造中的应用. 生物工程学报, 2010, 26 (7): 880-887. Zhao X Q, Bai F W, Li Y. Application of systems biology and synthetic biology in strain improvement for biofuel production. Chinese Journal of Biotechnology,2010,26(7):880-887.
[5] 张晓阳, 李余动, 吴雪昌. 酿酒酵母的"组学"技术研究进展及其在工程菌株构建中的应用. 中国生物工程杂志, 2011, 31 (8): 139-144. Zhang X Y, Li Y D, Wu X CH. Research progress of "Omics" technologies and its application in construction of engineering strain of Saccharomyces cerevisiae . China Biotechnology,2011,31(8):139-144.
[6] 陈洵, 周世奇, 陈涛, 等. 功能基因组学与代谢工程: 微生物菌种改进与生物过程优化. 化工学报, 2006, 57 (8): 1792-1801. Chen X, Zhou S Q, Chen T, et al. Functional genomics and metabolic engineering: microbial strain improvement and bioprocess optimization. Journal of Chemical Industry and Engineering(China),2006,57(8):1792-1801.
[7] Mukhopadhyay A, Redding A M, Rutherford B J, et al. Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol, 2008, 19 (3): 228-234.
[8] Park J H, Lee S Y, Kim T Y, et al. Application of systems biology for bioprocess development. Trends Biotechnol, 2008, 26 (8):404-412.
[9] Winter G, Krmer J O. Fluxomics-connecting 'omics analysis and phenotypes. Environ Microbiol, 2013, 15 (7): 1901-1916.
[10] Snchez B, Ruiz L, Gueimonde M, et al. Omics for the study of probiotic microorganisms. Food Res Int, 2013,54(1):1061-1071.
[11] Linial M, Yona G. Methodologies for target selection in structural genomics. Prog Biophys Mol Biol, 2000, 73 (5):297-320.
[12] 庄金秋, 杨丽梅, 贾杏林. 功能基因组学研究概述. 中国生物工程杂志, 2005, (S1): 204-209.
[13] Goffeau A, Barrell B G, Bussey H, et al. Life with 6000 genes. Science, 1996, 274 (5287): 546, 563-567.
[14] Dujon B. The yeast genome project: what did we learn?. Trends Genet, 1996, 12 (7): 263-270.
[15] Kvitek D J, Sherlock G. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet, 2011, 7 (4): 1-11.
[16] Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol, 2000, 18 (6): 630-634.
[17] Argueso J L, Carazzolle M F, Mieczkowski PA, et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res, 2009, 19 (12): 2258-2270.
[18] Gharizadeh B, Herman Z S, Eason R G, et al. Large-scale pyrosequencing of synthetic DNA: a comparison with results from Sanger dideoxy sequencing. Electrophoresis, 2006, 27 (15): 3042-3047.
[19] Zheng D Q, Wang PM, Chen J, et al. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics, 2012, 13: 479.
[20] Li H, Ma M L, Luo S, et al. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Int J Biochem Cell Biol, 2012, 44 (7): 1087-1096.
[21] Teixeira M C, Raposo L R, Mira N P, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol, 2009, 75 (18): 5761-5772.
[22] You K M, Rosenfield C L, Knipple D C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol, 2003, 69 (3): 1499-503.
[23] Aguilera F, Peinado R A, Millán C, et al. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol, 2006, 110 (1): 34-42.
[24] Lin F M, Qiao B, Yuan Y J. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol, 2009, 75 (11): 3765-3776.
[25] Mira N P, Palma M, Guerreiro J F, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact, 2010, 9: 79.
[26] Velculescu V E, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome. Cell, 1997, 88 (2): 243-251.
[27] Oliver S G, Winson M K, Kell D B, et al. Systematic functional analysis of the yeast genome. Trends Biotechnol, 1998, 16 (9): 373-378.
[28] Brown N A, de Castro PA, de Castro Pimentel Figueiredo, et al. Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res, 2013, 13 (3): 277-290.
[29] Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, et al. Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol, 2011, 145 (1): 211-220.
[30] Pérez-Torrado R, Gómez-Pastor R, Larsson C, et al. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol, 2009, 81 (5): 951-960.
[31] Li B Z, Cheng J S, Ding M Z, et al. Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol, 2010, 148 (4): 194-203.
[32] Ismail K S, Sakamoto T, Hatanaka H, et al. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol, 2013, 163 (1): 50-60.
[33] Ismail K S, Sakamoto T, Hatanaka H, et al. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production. J Ind Microbiol Biotechnol, 2013, 40 (9): 1039-1050.
[34] Shahsavarani H, Sugiyama M, Kaneko Y, et al. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv, 2012, 30 (6): 1289-1300.
[35] Benjaphokee S, Koedrith P, Auesukaree C, et al. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. N Biotechnol, 2012, 29 (2): 166-176.
[36] Auesukaree C, Koedrith P, Saenpayavai P, et al. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J Biosci Bioeng, 2012, 114 (2): 144-149.
[37] Li B Z, Yuan Y J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2010, 86 (6): 1915-1924.
[38] Allen S A, Clark W, McCaffery J M, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels, 2010, 3: 2.
[39] 朱玉贤. 现代分子生物学. 北京:高等教育出版社, 2007. Zhu Y X.Modern Molecular Biology.3rd.Beijing:Higher Education Press,2007.
[40] Yadav S P. The wholeness in suffix -omics, -omes, and the word om. J Biomol Tech, 2007, 18 (5): 277.
[41] Krogan N J, Cagney G, Yu H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006, 440 (7084): 637-643.
[42] 周晓. 反复间歇真空发酵过程中酿酒酵母适应性进化的系统分析. 天津:天津大学, 2011. Zhou X.Systematic Investigation on Adaptive Evolution of Saccharomyces cerevisiae to Repeated-batch Vacuum Fermentation.Tianjin:Tianjin University.2011.
[43] Ding M Z, Wang X, Liu W, et al. Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors. PLoS One, 2012, 7 (8): e43474.
[44] Hao X C, Yang X S, Wan P, et al. Comparative proteomic analysis of a new adaptive Pichia stipitis strain to furfural, a lignocellulosic inhibitory compound. Biotechnol Biofuels, 2013, 6 (1): 34.
[45] Picotti P, Clément-Ziza M, Lam H, et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature, 2013, 494 (7436): 266-270.
[46] Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol, 2003, 7 (1): 55-63.
[47] Yin Z, Wilson S, Hauser N C, et al. Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol Microbiol, 2003, 48 (3), 713-724.
[48] Giardina B J, Stanley B A, Chiang H L. Comparative proteomic analysis of transition of Saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium. Proteome Sci, 2012, 10 (1):40.
[49] Kolkman A, Daran-Lapujade P, Fullaondo A, et al. Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol, 2006, 2:26.
[50] Pham T K, Chong P K, Gan C S, et al. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J Proteome Res, 2006, 5 (12): 3411-3419.
[51] Pham T K, Wright PC. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res, 2008, 7 (11): 4766-4774.
[52] Almeida B, Ohlmeier S, Almeida A J, et al. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics, 2009, 9 (3): 720-732.
[53] Lin F M, Tan Y, Yuan Y J. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics, 2009, 9 (24): 5471-5483.
[54] Westman J O, Taherzadeh M J, Franzén C J. Proteomic analysis of the increased stress tolerance of Saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules. PLoS One, 2012, 7 (11): e49335.
[55] Hesselberth J R, Miller J P, Golob A, et al. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol, 2006, 7: R30.
[56] Kim I K, Roldo A, Siewers V, et al. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res, 2012, 12 (2): 228-248.
[57] Nicholson J K, Lindon J C, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29 (11): 1181-1189.
[58] Hasunuma T, Sanda T, Yamada R, et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact, 2011, 10 (1): 2.
[59] Ding M Z, Li B Z, Cheng J S,et al. Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS, 2010, 14 (5): 553-561.
[60] Loureno A B, Roque F C, Teixeira M C, et al. Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells. PLoS One. 2013, 8 (2): e55439.
[61] Ding M Z, Wang X, Yang Y, et al. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS, 2011, 15 (10): 647-653.
[62] Wang X, Li B Z, Ding M Z, et al. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. OMICS, 2013, 17 (3): 150-159.
[63] Klimacek M, Krahulec S, Sauer U, et al. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol, 2010, 76 (22): 7566-7574.
[64] Bergdahl B, Heer D, Sauer U, et al. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Biotechnol Biofuels, 2012, 5 (1): 34.
[65] Ma N L, Rahmat Z, Lam S S. A review of the "omics" approach to biomarkers of oxidative stress in Oryza sativa. Int J Mol Sci, 2013, 14 (4): 7515-7541.
[66] Feng X, Page L, Rubens J, et al. Bridging the gap between fluxomics and industrial biotechnology. J Biomed Biotechnol, 2011: 460717.
[67] Brochado A R, Matos C, Mller B L, et al. Improved vanillin production in baker's yeast through in silico design. Microb Cell Fact, 2010, 9: 84.
[68] Frick O, Wittmann C. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact, 2005, 4: 30.
[69] Pagliardini J, Hubmann G, Alfenore S, et al. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb Cell Fact, 2013, 12: 29.
[70] Vargas F A, Pizarro F, Pérez-Correa J R, et al. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst Biol, 2011, 5: 75.
[71] Bro C, Regenberg B, Frster J, et al. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng, 2006, 8 (2): 102-111.
[72] Celton M, Goelzer A, Camarasa C, et al. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng, 2012, 14 (4): 366-379.
[73] Celton M, Sanchez I, Goelzer A,et al. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics, 2012, 13: 317.
[74] Petranovic D, Vemuri G N. Impact of yeast systems biology on industrial biotechnology. J Biotechnol, 2009, 144 (3): 204-211.
[75] 蒋太交, 薛艳红, 徐涛. 系统生物学—生命科学新领域. 生物化学与生物物理进展, 2004, 31 (2): 957-964. Jiang T J,Xue Y H,Xu T.Systems biology:a new field of biological science.Progress in Biochemistry and Biophysics,2004,31(2):957-964.
[1] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[2] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[3] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[4] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[5] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[6] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[7] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[8] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[9] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[10] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[11] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.
[12] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[13] LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(4): 41-45.
[14] ZHAO Xiu-juan, ZHENG Xiao-dong, XUE Tao-tao, CAI Lu. Comparison of ARS Element Forming Nucleosome on Saccharomyces cerevisiae YPH499 Ⅲ Chromosome in vitro[J]. China Biotechnology, 2014, 34(11): 34-41.
[15] LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai. The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice[J]. China Biotechnology, 2014, 34(11): 47-53.