Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (11): 44-49    DOI:
    
Optimization of Culture Conditions for Hydrogen Production of Chlamydomonas reinhardtii and its Transgenic Strain lba
XU Li-li, YAN Guang-yu, WANG Quan-xi, WU Shuang-xiu
College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China
Download: HTML   PDF(510KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to determine the optimal culture conditions for hydrogen production of Chlamydomonas reinhardtii strain 849 and its transgenic alga lba, the orthogonal experiments were designed to test the effects of such three factors as light intensity, cell density and the sulfur content in the culture medium at three levels, meanwhile O2- evolution activity and pH value were detected. The results showed that at 25 ℃, the optimal culture conditions for hydrogen production for both strain 849 and the transgenic alga lba were under 60μmol/(m2·μs) of light intensity, 12.5μg/ml of the chlorophyll content as cell density and 0μmol/L of sulfate content in the medium. Under such condition, the maximal hydrogen yield of strain 849 and the transgenic algae lba reached 349μl/mg chl and 634μl/mg chl respectively. The net O2- evolution activity of transgenic alga lba was lower than 849.The results provided basic data for the utilization of leghemoglobin in the improvement of hydrogen production of C. reinhardtii with bioengineering methods in the future.



Key wordsChlamydomonas reinhardtii      Gene transformation      Leghemoglobin      lba Gene      Culture optimization     
Received: 19 July 2010      Published: 19 November 2010
ZTFLH:  Q785  
Corresponding Authors: WU Shuang-xiu     E-mail: bowusx@yahoo.com.cn
Cite this article:

XU Li-li, YAN Guang-yu, WANG Quan-xi, WU Shuang-xiu. Optimization of Culture Conditions for Hydrogen Production of Chlamydomonas reinhardtii and its Transgenic Strain lba. China Biotechnology, 2010, 30(11): 44-49.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I11/44

[1] Hemschemeier A, Melis A,Happe T. Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynthesis Research, 2009,102 (2-3):523-540.
[2] 徐斐,何定兵.绿藻光合生物制氢技术进展.工业微生物,2007, 37(4):60-64. Xu F, He D B. Industrial Microbiology, 2007, 37(4): 60-64.
[3] Gaffron H. Reduction of CO2 with H2 in green plants. Nature, 1939, 143: 204 - 205
[4] 吴双秀, 王全喜. 衣藻生物制氢的研究进展. 中国生物工程杂志,2006, 26(10):88-92. Wu S X,Wang Q X.China Biotechnology, 2006, 26(10):88-92.
[5] Spruit C J P. Simultaneous photoproduction of hydrogen and oxygen by Chlorella. Mededl Landbouwhogeschool(Wageningen/Nederland),1958, 58(1):1-17.
[6] Melis A, Zhang L P, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.Plant Physiol,2000,122:127-136.
[7] Appleby C A. Leghemoglobin and Rhizobium repiration. Annu Rev Plant Physiol,1984, 35: 443-478.
[8] 张静娴, 荆玉祥. 植物的血红蛋白. 生命科学,1999, 11(2):66-71. Zhang J X,Jing Y X.Chinese Bulletin of Life Sciences, 1999, 11(2):66-71.
[9] Suthar D H, Chattoo B B. Expression of Vitreoscilla hemoglobin enhance growth and levels of alpha-amylase in Schwanniomyces occidentialis. Applied Microbiological Biotechnology, 2006, 72 (1):94-102.
[10] Wu S X,Yan G Y,Xu L L, et al. Improvement of hydrogen production with expression of lba gene from soybean in chloroplast of Chlamydomonas reinhardtii. International Journal of Hydrogen Energy,2010 (in press).
[11] 阎光宇,刘晓磊,王全喜,等.豆血红蛋白基因lba的克隆及其转化衣藻叶绿体. 中国生物工程杂志, 2009, 29(5): 66-71. Yan G Y,Liu X L,Wang Q X,et al.China Biotechnology, 2009, 29 (5): 66-71.
[12] Harris E H. The Chlamydomonas Sourcebook: a comprehensive guide to biology and laboratory use. New York: Academic Press, 1989.32-34.
[13] Zhang L P, Melis A. Probing green algal hydrogen production. Phil Trans R Soc Lond B, 2002,357(1426): 1499-1511.
[14] Kosourov S, Tsygankov A,Seibert M,et al. Sustained Hydrogen Photoproduction by Chlamydomonas reinahrdtii: Effects of Culture Parameters. Biotechnology and Bioengineering, 2002, 78 (7): 731-740.
[15] 胡蕙露, 胡翠玲, 杨枝发.银杏茎段组织培养正交试验.安徽农业大学学报,1997, 24(2): 129-133. Hu H L, Hu C L, Yang Z F.Journal of Anhui Agricultural University, 1997, 24 (2): 129-133.
[16] 王荣荣, 阎光宇, 王全喜,等. 氮源对莱茵衣藻生长和产氢的影响. 太阳能学报,2009, 30(4): 546-550. Wang R R, Yan G Y, Wang Q X, et al. Acta Energiae Solaris Sinica, 2009, 30(4): 546-550.
[17] Makarova V V,Kosourov S,Krendeleva T E,et al.Photoproduction of hydrogen by sulfur-deprived C.reinhardtii mutants with impaired Photosystem II photochemical activity. Photosynth Research, 2007, 94(1): 79-89.
[18] Wolk C P. Heterocyst formation in Anabaena.In:BrunY V,Shimkets L J.Prokaryotic development. Washington D C:AMS Press, 2000.83-104.
[19] 贾丽娜, 张栩. 谷氨酸废液培养莱茵衣藻的产氢研究. 生物加工过程, 2005, 3(1): 45-48. Jia L N, Zhang Y. Chinese Journal of Bioprocess Engineering, 2005, 3 (1): 45-48.
[20] Timmins M, Zhou W X, Jens R,et al.The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H2 Production by Sulfur Depletion. The Journal of Biological Chemistry, 2009, 284(35): 23415-23425.

[1] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.
[2] HE Wei, PAN Jun-min. Protein Phosphatase 2CInvolved in the Flagellar Transition Zone Structure of Chlamydomonas reinhardtii[J]. China Biotechnology, 2016, 36(5): 68-73.
[3] CHU Yi-yang, TIAN Hui-qin, XU HUI Jin-lan, ZHU Ben-zhong. Progress in Researches of Plant Multigene Transformation[J]. China Biotechnology, 2016, 36(12): 111-116.
[4] JIANG Jin-Ju, MIAO Feng-Ping, FENG Da-Wei, QIN Song. Research Situation and Prospect of Microalgae Biodiesel[J]. China Biotechnology, 2010, 30(02): 134-137.
[5] YAN Guang-Yu- Liu-Xiao-Lei- Wang-Quan-Chi- Tun-Shuang-Xiu. Cloning and Transformation of lba gene of Glycine max into Chloroplast of Chlamydomonas reinhardtii[J]. China Biotechnology, 2009, 29(05): 66-71.