Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (03): 66-70    DOI:
    
Very High Gravity Ethanol Continuous Fermentation in Reaction System Composed by Packing Tubular Reactors
SHEN Yu1,2, BAI Feng-wu2
1. Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China;
2. College of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116023, China
Download: HTML   PDF(594KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fermentation system composed of a stirred tank followed by four-stage packed tubular bioreactors in series was set up to evaluate very high gravity ethanol continuous fermentation using Saccharomyces cerevisiae. Polyurethane and wood chips were used for cells immobilization in tubular reactors, and ethanol productivity in later reactors were maintained at high level by high bilomass content even the viability and ethanol productivity of cells were inhibited by high ethanol content. The system ran at 0.02h-1 and fermented very high gravity medium containing 280 g/L glucose to produced 15.4 % v/v ethanol. It was also proved that dilution rat should reduce by new reactors added to higher final ethanol content under the lower dilution rat level.



Key wordsEthanol      Very high gravity continuous fermentation      Composed reaction system      Cells immobilization     
Received: 09 October 2010      Published: 01 April 2011
ZTFLH:  Q815  
Cite this article:

SHEN Yu, BAI Feng-wu. Very High Gravity Ethanol Continuous Fermentation in Reaction System Composed by Packing Tubular Reactors. China Biotechnology, 2011, 31(03): 66-70.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I03/66

[1] Thomas K C, Hynes S H, Ingledew W M. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochem, 1996, 31(4): 321-331.
[2] Bayrock D P, Ingledew W M. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. J Ind Microbiol Biotechnol, 2001, 27(2): 87-93.
[3] Reddy L V A, Reddy O V S. Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae: role of finger millet (Eleusine coracana L.) flour. Process Biochem, 2006, 41(3): 726-729.
[4] Ding Z Y, Zhang L, Fang Y Y, et al. Application of full permeate recycling to very high gravity ethanol fermentation from corn. Korean J Chem Eng, 2009, 26(3): 719-723.
[5] Thomas K C, Ingledew W M. Fuel alcohol production: effects of free amino nitrogen of fermentation of very high gravity wheat mashes. Appl Environ Microbiol, 1990, 56(7): 2046-2050.
[6] Wang F Q, Gao C J, Yang C Y, et al. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett , 2007, 29(2): 233-236.
[7] D’Amore T, Panchal C J, Russell I, et al. A study of ethanol tolerance in yeast. Crit Rev Biotechnol, 1989, 9(4): 287-304.
[8] Seki T, Myoga S, Limtong S, et al. Genetic construction of yeast strains for high ethanol production. Biotechnol Lett, 1983, 5(5): 351-356.
[9] Kavanagh K, Whittaker P A. Application of protoplast fusion to the nonconventional yeast. Enzyme Microb Technol, 1996, 18(1): 45-51.
[10] Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Sci, 2006, 314(5805): 1565-1568.
[11] 杨蕾,陈丽杰,白凤武.高浓度酒精连续发酵过程中振荡行为的模拟及填料弱化振荡的机理.化工学报,2007,58(3):715-721. Yang L, Chen L J, Bai F W. J CIESC, 2007, 58(3): 715-721.
[12] 赵斌,何绍江.微生物学实验.北京:科学出版社,2002. 69-72. Zhao B, He S J. Technology of Microbiology. Beijing:Science Press, 2002.69-72.
[13] Brányik T, Vicente A A, Kuncová G, et al. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation. Biotechnol prog, 2004, 20(6): 1733-1740.
[14] 陈令伟,葛旭萌,赵心清,等.木块填料对高浓度乙醇连续发酵过程中振荡行为的弱化机制.化工学报,2007,58 (10):2624-2628. Chen L W, Ge X M, Zhao X Q. J CIESC, 2007, 58(10): 2624-2628.
[15] Shen H Y, Moonjai N, Verstrepen K J, et al. Impact of attachment immobilization on yeast physiology and fermentation performance. J Am Soc Brew Chem, 2003, 61(2): 79-87.
[16] Guénette M, Duvnjak Z. Wood blocks as a carrier for Saccharomyces cerevisiae used in the production of ethanol and fructose. Chem Eng J Biochem Eng J, 1996, 61(3): 233-240.
[17] Thomas K C, Hynes S H, Ingledew W M. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol, 1994, 60(5): 1519-1524.
[18] Verstrepen K J, Klis F M. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol, 2006, 60(1):5-15.

[1] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[2] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[3] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[4] Xin-tong CHI,Shao-ming MAO. Optimization of Bioethanol Production by Brown Algae[J]. China Biotechnology, 2017, 37(12): 111-118.
[5] WANG Jing-sheng, WANG Qiu-feng, LI Yong, LIU Yan, ZHANG Xian-chu, LI Bo, DONG Qing-shan, LIU Yue. The Application of Logistic Equation to Simulate Ethanol Fermentation in Different Initial Concentration Reducing Sugar[J]. China Biotechnology, 2017, 37(10): 81-85.
[6] GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol[J]. China Biotechnology, 2016, 36(5): 97-105.
[7] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[8] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[9] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[10] SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1[J]. China Biotechnology, 2015, 35(7): 37-44.
[11] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[12] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[13] GAO Jiao-qi, HAN Xi-tong, KONG Liang, YUAN Wen-jie, WANG Na, BAI Feng-wu. Application Progress of Kluyveromyces marxianus in the Industrial Biotechnology[J]. China Biotechnology, 2014, 34(2): 109-117.
[14] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.
[15] YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 75-83.