Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 22-26    DOI: Q789
    
Enhancement of Tolerance to Abiotic Stress of Saccharomyces cerevisiae Transformed by a Gene Encoding Glyoxalase from Banana
DENG Cheng-ju1,3,ZHANG Jian-bin1,2,JIA Cai-hong1,2,JIN Zhi-qiang1,2,4,,XU Bi-yu1,2
1.Institute of Tropical Bioscience and Biotechnology,Chinese Academy of Tropical Agricultural Science,Haikou 571101,China
2.Key Laboratory of Tropical Crop Biotechnology,Ministry of Agriculture,Haikou 571101,China
3.Department of Agriculture,Hainan University,Haikou 571101,China
4.Chinese Academy of Tropical Agricutural Sciences Haikou Experimental Station,Haikou 571101,China
Download: HTML   PDF(727KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Glyoxalase(GLO) plays a very important role in plant detoxification system.Glyoxalase gene was isolated from banana (Musa acuminata AAA subgoup)cDNA library, named as MaGLO14. To confirm the tolerance of MaGLO14 to abiotic stresses, a yeast expression vector PYES2-MaGLO14 has been constructed and transformed into Saccharomyces cerevisiae strain INVSC1 with uracil auxotrophic phenotype. Comparison of colony numbers of transgenic INVSC1 with non-transgenic INVSC1 grown in medium containing NaCl, under high temperature and low temperature, drought and ultraviolet radiation stress, the survival colony numbers of transgenic INVSC1 were more than that of non-transgenic INVSC1 respectively. The results confirm that MaGLO14 enhances the tolerance of Saccharomyces cerevisiae to abiotic stresses. It is suggested that MaGLO14 may play important roles in resistantance of plants to abiotic stresses.



Key wordsBanana (Musa acuminata AAA subgoup)      Glyoxalase      Glyoxalase gene      Abiotic stressYeast (Saccharomyces cerevisiae)      Transgenic yeast     
Received: 22 March 2010      Published: 25 August 2010
Cite this article:

DENG Cheng-Ju, ZHANG Jian-Bin, GU Cai-Gong, JIN Zhi-Jiang, XU Bi-Yu. Enhancement of Tolerance to Abiotic Stress of Saccharomyces cerevisiae Transformed by a Gene Encoding Glyoxalase from Banana. China Biotechnology, 2010, 30(08): 22-26.

URL:

https://manu60.magtech.com.cn/biotech/Q789     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/22

[1 ] Paul J Thornalley. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 1990,269: 111. 
[2] SinglaPareek S L, Reddy M K, Sopory S K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA,2003,100:1467214677. 
[3] Veena Reddy V S, Sopory S K.Glyoxalase I from Brassica juncea: molecular cloning, regulation and its overexpression confer tolerance in transgenic tobacco under stress. Plant J, 1999,17:385395. 
[4] SinglaPareek S L, Yadav S K, Pareek A, et al. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zincspiked soils. Plant Physiol, 2006,140:613623. 
[5] Suchandra Deb Roy ,Mukesh Saxena.Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell Tiss Organ Cult ,2008, 95:111. 
[6] Sneh L SinglaPareek. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res,2007,DOI 10.1007/s1124800790829082. 
[7] Yadav S K, SinglaPareek S L.Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione.Biochem Biophys Res Commun , 2005,337:6167. 
[8] Yadav S K, SinglaPareek S L, Reddy M K,et al.Methylglyoxal detoxification by glyoxalase system: A survival strategy during environmental stresses. Physiol Mol Biol Plants,2005,11:111. 
[9] Yadav S K, SinglaPareek S L, Reddy M K,et al.Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett ,2005,579:62656271. 
[10] 金承涛.Al3+高温对酿酒酵母的胁迫作用及其耐性机制研究.浙江大学生命科学学院, 2005. Jin C T.Zhejiang University, College of Life Science,2005. 
[11] 都业杰.酿酒酵母表达水稻Cu/ZnSOD基因抑制内源GSH的合成.东北林业大学,2007. Du Y J. Northeast Forestry University,2007. 
[12] 刘明坤, 刘关君, 阎秀峰.西伯利亚蓼谷胱甘肽转移酶和半胱氨酸合成酶基因在酿酒酵母中的共表达. 植物学通报,2008,25 (6): 687694. Liu M K,Liu G J,Yan X F. Chinese Bulletin of Botany, 2008,25 (6): 687694. 
[13] Wang B F, Wang Y C, Zhang D W, et al. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. Journal of Forestry Research ,2008,19(1):5862. 
[14] Prasanna Bhomkar,Chandrama P.Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breeding,2008,22:169181. 
[15] Kousaku Murata,Yasuki Fukuda,Makoto Shimosaka, et al. Phenotypic character of the methylglyoxal resistance gene in Saccharomyces cerevisiae: Expression in Escherichia coli and application to breeding wildtype yeast strains.Applied and Environmental Microbiology,1985,50(5):12001207. 
[16] 朱怡,叶美莉,叶燕锐,等.酿酒酵母获得耐性及相关基因转录水平的研究. 现代食品科技,2009,25(8):865868. Zhu Y, Ye M L, Ye Y R, et al. Modern Food Science and Technology, 2009, 25(8):865868. 
[17] 杨晔,蒋晶,乔桂荣,等. 利用酿酒酵母表达氯化钠胁迫下旱柳全长cDNA 文库. 浙江林学院学报,2009,26(4):473478. Yang Y, Jiang J, Qiao G R,et al. Journal of Zhejiang Forestry College,2009,26(4):473478.

[1] LI Rui, WANG Wen-guo, FAN Lin-hong, WANG Sheng-hua. Abiotic Stress Tolerance Analysis Two Alternatively Spliced Isoforms of LEA3 Gene from Pogonatherum paniceum in Yeast[J]. China Biotechnology, 2012, 32(08): 30-35.