Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (2): 88-95    DOI:
    
Fermentation Optimization Directed by Physiological Parameter Respiratory Quotient
WANG Ping1,2, WANG Ze-Jian2, ZHANG Si-liang2
1. Hebei Medical University, Shijazhuang 050017, China;
2. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(1120KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Online measurement of process parameters play a fundamental role in optimization and control of fermentation process engineering. Respiratory quotient(RQ) is the response of intracellular microscopic flow on global metabolic parameters, which reflect the utilization of substrates, product and by-products synthesis, and the changes of metabolic pathways and flux in microbial cultivation. The optimal controlling strategies of fermentation process based on the combination of micro-intracellular metabolism and macro-physiological parameter RQ in several industrial products production were investigated. RQ, measured by exhaust gas analysis online, is a crucial factor in optimization of the intracellular metabolic pathway flux through the regulation of global metabolic parameters and improvement of the yields of target product.

Key wordsFermentation      Micro metabolism      Macro metabolism      Respiratory quotient      Optimization     
Received: 03 December 2012      Published: 25 February 2013
ZTFLH:  Q819  
Cite this article:

WANG Ping, WANG Ze-Jian, ZHANG Si-liang. Fermentation Optimization Directed by Physiological Parameter Respiratory Quotient. China Biotechnology, 2013, 33(2): 88-95.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I2/88

[1] 张嗣良, 储炬, 庄英萍, 抗生素发酵过程优化技术研究. 中国抗生素杂志, 2002,27: 572-576. Zhang S L, Chu J, Zhuang Y P. Optimization of the antibiotics fermentation processes. Chinese Journal of Antibiotics, 2002, 27: 572-576.
[2] Junker B H, Wang H Y. Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng, 2006, 95(2): 226-261.
[3] 杭海峰, 叶新嗥, 郭美锦, et al. 以葡萄糖为生长相基质的重组毕赤酵母表达植酸酶发酵. 工业微生物, 2009, 39(4): 12-16. Hang H F, Ye X H, Guo M J, et al. Production of recombinant phytase by Pichia pastoris using glucose as the growth substrate. Industiral Microbiology, 2009, 39(4): 12-16.
[4] Wang Y, Chu J, Zhuang Y, et al. Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv, 2009 , 27(6): 989-895.
[5] 张嗣良, 发酵过程多水平问题及其生物反应器装置技术研究——基于过程参数相关的发酵过程优化与放大技术. 中国工程科学, 2001,3:37-45. Zhang S L. Study on the fermentation process at multi-levels in bioreactor and aplication for special purposes——optimization and scaling up of the fermentation process based on the parameter correlation method. Engineering Science, 2001,3:37-45.
[6] Zhang S, Chu J, Zhuang Y. A multi-scale study of industrial fermentation processes and their optimization. Adv Biochem Eng Biotechnol, 2004, 87: 97-150.
[7] Zeng A P, Deckwer W D. Bioreaction techniques under microaerobic conditions : from molecular to pilot plant reactors. Chemical Engineering Science, 1996, 51(10): 2305-2314.
[8] Franzen C J. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast, 2003, 20(2): 117-132.
[9] Payot T,Chemaly Z,Fick M. Lactic acid production by Bacillus coagulans kinetic studies and optimization of culture medium for batch and continuous fermentation.Engyme Microbiology Technology, 1999, 24(2): 191-199.
[10] Anastassiadis S, Rehm H J. Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors. Appl Microbiol Biotechnol, 2006,73(3):541-548.
[11] Shin H Y, Lee J Y, Choi H S, et al. Production of cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35. J Microbiol, 49(5):753-758.
[12] Iudina O D, Levitov M M, Buneeva T A. 肖杰. 基于呼吸熵在线检测的谷氨酸发酵过程控制研究.无锡:江南大学, 2008. Xiao J. Fermentation process control based on the on-line RQ detection in glutamic acid production. Wusi: Jiangnan Universiry, 2008.
[16] 陈双喜, 蔡显鹏, 储炬,等. 鸟苷发酵过程中参数相关特性的研究.华东理工大学学报(自然科学版), 2003, 29(5):464-466. Chen S X, Cai X P, Chu J, et al. Parameter correlation of guanosine fermentation process. Journal of East China University of Science and Technology(natural science edition) , 2003, 29(5):464-466.
[17] Aon J C, Cortassa S. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Metab Eng, 2001, 3(3):250-264.
[18] Tibor A, Werner Z, Manfred P, et al. Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochemical Engineering Journal, 2004, 17 :187-194.
[19] 储炬,李友荣. 现代工业发酵调控学. 北京:化学工业出版社, 2006.45-84. Chu J, Li Y R. Modern Industrial Fermentation Control Study. Beijing:Chemical Industry Press, 2006. 45-84.
[20] Neves A R. Overview on sugar metabolism and its control in Lactococcus lactis the input from in vivo NMR. FEMS Microbiol Rev, 2005, 29(3): 531-554.
[21] Ramachandran S, Fontanille P, Pandey A, et al. Fed-batch production of gluconic acid by terpene-treated Aspergillus niger spores. Appl Biochem Biotechnol, 2008,151(2): 413-423.
[22] 李景森, 庄英萍, 王永红,等. 基于参数相关分析的头孢菌素C发酵过程溶氧调控策略. 华东理工大学学报(自然科学版), 2007. 06:788-793. Li J S, Zhuang Y P, Wang Y H, e al. DO control strategy on cephalosporin C fermentation based on the association analysis of multi-parameters. Journal of East China University of Science and Technology(natural science edition), 2007, 06:788-793.
[23] 巫延斌,储消和,王永红,等. 阿维菌素发酵过程参数相关特性研究及过程优化. 华东理工大学学报(自然科学版), 2007,33(5):643-646. Wu Y B, Chu X H, Wang Y H, et al. Optimization of Avermectin fermentation process based on parameter association analysis. Journal of East China University of Science and Technology(natural science edition), 2007, 33(5):643-646.
[24] Berovic M. Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng, 1999, 64(5): 552-557.
[25] McIntyre M, McNeil B. Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme and Microbial Technology, 1997,20(2): 135-142.
[26] 徐俊 金虎 高敏杰,等. 呼吸熵监控毕赤酵母表达猪α干扰素活性水平的研究. 生物学杂志, 2010,27(2):5-8. Xu J, Jin H, Gao M J, et al. Porcine interferon-α experision with Pichia pastoris fed-batch cultivation under respiratory quotient monitoring. Journal of Biology, 2010,27(2): 5-8.
[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[3] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[4] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[5] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[6] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[7] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[8] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[9] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[10] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[11] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[12] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[13] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[14] Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening[J]. China Biotechnology, 2018, 38(8): 34-40.
[15] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.