Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (1): 84-89    DOI:
    
Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987
CHEN Jie1, WEI Hong-gang1, LUO Yuan-chan1, ZHANG Dao-jing1, LI Shu-lan2, TIAN Li3, LI Yuan-guang1
1. East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai 200237, China;
2. Shanghai Zeyuan Marine Biotechnology Co., Ltd., Shanghai 200237, China;
3. The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
Download: HTML   PDF(771KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The new antifungal cyclic lipopeptide Marinhysin (MA) produced by Bacillus marinus B-9987 shows the excellent activity against plant pathogens both in vitro and in vivo. In the present study, the response surface methodology (RSM) was employed to optimize the medium composition for producing MA. The results of the Plackett-Burman design showed that sucrose and yeast powder had significant effects on MA production. The central composite design was applied to further optimize the concentration of sucrose and yeast powder in the medium. The results of analysis suggested that the optimum values of the tested variables were sucrose of 42.0 g/L and yeast powder of 42.3 g/L. MA concentration reached 75.74 mg/L, which was in agreement with the predicted value of 68.19mg/L. In comparison to the production of original level (54.12mg/L) in a 250ml flask, 1.28-fold increment had been obtained. By scaling u Pthe fermentation from flask to a 5L fermentor with the optimal medium, MA concentration was increased to 182mg/L, which was 1.28 times of the value (130mg/L) with the original medium.

Key wordsMarinhysin A      Bacillus marinus B-9987      Medium optimization      Response surface methodology     
Received: 01 November 2012      Published: 25 January 2013
ZTFLH:  Q815  
Cite this article:

CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987. China Biotechnology, 2013, 33(1): 84-89.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I1/84

[1] Desai J D,Banat I M. Microbial production of surfactants and their commercial potential. Fuel and Energy Abstracts,1997,38(4):221.
[2] Sun L J,Lu Z X,Bie X M,et a1.Isolation and characterization of a co-producer of fengycins and surfactins,endophytic Bacillus amyloliquefaciens ES-2,from Scutellari baicalensis Ceorgi.World Jottrnat of Microbiology and Biotechnology,2006,22:1259-1266.
[3] Kommutsi A,Chen X H,Henne A,et a1.Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42.Journal of Bacteriology,2004,186:1084-1096.
[4] Gong M,Wang J D,Zhang J,et al. Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (Iturin A). Acta Biochimica et Biophysica Sinica 2006,38(4):233-240.
[5] 黄现青,别小妹,吕凤霞,等. 枯草芽胞杆菌fmbJ产脂肽抑制点青霉效果及其桃防腐试验. 农业工程学报,2008,24(1):263-267. Huang X Q,Bei X M,Lv F X,et al. Inhibitory effect of lipopeptides from Bacillus Subtilis fmbJ on Penicillium notatum and its antisepsis to peach.Transactions of the Chinese Society of Agricultural Engineering,2008,24(1):263-267.
[6] Chen L L,Wang N,Wang X M,et al. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresource Technology,2010,101:8822-8827.
[7] 任召珍,郑媛,孙谧,等. 海洋侧孢短芽孢菌Lh-1抗菌活性物质的分离及特性研究. 微生物学报,2007,47(6):997-1001. Ren Z Z,Zheng Y,Sun M,et al. Purification and properties of an antimicrobial substance from marine Brevibacillus laterosporus Lh-1. Acta Microbiologica Sinica,2007,47(6):997-1001.
[8] Liu R F,Zhang D J,Li Y G,et al. A new antifungal cyclic lipopeptide from Bacillus marinus B-9987. Helvetica Chimica Acta,2010,93:2419-2425.
[9] 李元广,张道敬,刘荣峰,等. 一种环脂肽类化合物制备及其应用:中国专利, 200910198819.2. 2010.09.22. Li Y G,Zhang D J,Liu R F,et al. Preparation and application of a lipopeptide compound produced by Bacillus marinus B-9987:Chinese Patent,200910198737.8. 2009.11.13.
[10] 刘荣峰. 海洋芽孢杆菌B-9987产脂肽类抗菌物质的分离及活性研究. 上海:华东理工大学,生物工程学院,2011. Liu R F. Studies on the isolation and bioactivity of lipopeptides from the Strain Bacillus marinus B-9987. Shanghai:East China University of Science and Technology,School of Biotechnology,2011.
[11] 江红,林如,郑卫,等. 海洋青铜小单孢菌FIM 02-523产生的脂肽类化合物FW523的分离鉴别和生物学活性. 中国抗生素杂志,2006,31(5):267-277. Jiang H,Lin R,Zheng W,et al. Purification,identification and biological activities of a lipopeptide compound FW523 from a marine Micromonospora chalcea FIM 02-523.Chinese Journal of Antibiotics,2006,31(5):267-277.
[12] Ma Z W,Wang N,Hu,J C,et al. Isolation and characterization of a new iturinic lipopeptide,mojavensin A produced by a marine-deriived bacterium Bacillus mojavensis B0621A,Journal of Antibiotics,2012,65(6):317-322.
[13] Liu X Y,Ren B,Chen M,et al. Production and characterization of a grou Pof bioemulsifiers from the marine Bacillus velezensis strain H3. Microbiol Biotechnol, 2010,87:1881-1893.
[14] 罗远婵,田黎,韩菲菲,等. 海洋细菌B-9987的鉴定及其对植物病原菌的抑菌试验. 农药,2008,47(9):691-693. Luo Y C,Tian L,Han F F,et al. Identification of sea Bacterium B-9987 and test of its inhibition to some phytopathogens. Agrochemicals,2008,47(9):691-693.
[15] 岑沛霖,蔡谨. 工业微生物学. 第一版,北京:化学工业出版社,2001.06-01,131-132. Ceng PL,Cai J,Industrial microbiology. 1nd ed,Beijing:Chemical Industry Press,2001.06-01,131-132.
[16] 陈杰. 海洋芽孢杆菌B-9987发酵工艺优化及初步放大. 上海:华东理工大学,生物工程学院,2011. Chen J. Optimization of technology for culturing Bacillus marinus B-9987 and preliminary scale up. Shanghai:East China University of Science and Technology,School of Biotechnology,2011.
[17] 蔡武城. 生物物质常用化学分析法. 北京:科学出版社. 1982.56-58. Cai W C. Biological material commonly used chemical analysis. 1nd ed,Beijing:Science Press. 1982. 56-58.
[18] 沈娟,陆兆新,别小妹,等. Bacillus sp. fmbJ224发酵产新型抗菌肽培养基的优化研究. 生物工程学报,2005,21(4):609-614. Shen J,Lu J X,Bei X M,et al. Media optimization for the novel antimicrobial peptide by Bacillus sp. fmbJ224. Chinese Journal of Biotechnology,2005,21(4):609-614.
[19] 崔堂兵,刘煜平,郭勇,等. 枯草芽胞杆菌培养生产农用抗真菌素初步研究. 广东农业科学,2007,1:51-54. Cui T B,Liu Y P,Guo Y,et al. Preliminary study on an agro-antifungal substance production by liquid-state cultivation with Bacillus subtilis BS-06.Guangdong Agricultural Sciences,2007,1:51-54.
[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening[J]. China Biotechnology, 2018, 38(8): 34-40.
[3] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[4] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[5] LI Guo-kun, GAO Xiang-dong, XU Chen. Advances on Mammalian Cell Expression System[J]. China Biotechnology, 2014, 34(1): 95-100.
[6] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[7] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[8] LIU Bo-ning. The Lasted Development of Large Scale Cell Culture Technology for Commercial Antibody Manufacture[J]. China Biotechnology, 2013, 33(7): 103-111.
[9] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[10] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[11] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[12] ZHOU Guang-qi, MA Peng-bo, LIU Qiao, QUAN Chun-shan, FAN Sheng-di. Optimization of Culture Medium and Prediction of Antibacterial Activity by Bacillus Amyloliquefaciens Q-426 Fermentation[J]. China Biotechnology, 2013, 33(11): 21-26.
[13] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[14] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[15] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.