Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (12): 104-109    DOI:
    
Studies on the Properties of Biomacromolecules under Molecular Crowded Conditions
ZHANG Yu-jiao1, TANG Qian1, CAO Hong-yu1, ZHENG Xue-fang1,2
1. School of Life Science and Biotechnology, Dalian University, Dalian 116622, China;
2. Liaoning Key Lab of Bio-organic Chemistry, Dalian University, Dalian 116622, China
Download: HTML   PDF(382KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Living cells contain a variety of biomolecules, they play their physiological functions in different concentrations, which is often neglected in vitro studies. With the molecular crowding theory put forward, the addition of crowding agents in vitro is valued by more and more biologists and chemists, many research results show that the molecular crowding has effects on the properties of the biomolecules. The properties and functions of biomolecules from the effects of molecular crowding on protein folding, aggregation, enzymatic activity, the nucleic acids molecular structure and properties under the crowding conditions were discussed, to provide more references for the further research.

Key wordsCrowding environment      Biomolecules      Protein      Nucleic acids     
Received: 03 August 2012      Published: 25 December 2012
ZTFLH:  Q64  
  Q71  
Cite this article:

ZHANG Yu-jiao, TANG Qian, CAO Hong-yu, ZHENG Xue-fang. Studies on the Properties of Biomacromolecules under Molecular Crowded Conditions. China Biotechnology, 2012, 32(12): 104-109.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I12/104

[1] Swaminathan R, Hoang C P, Verkman A S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J, 1997, 72(4):1900-1907.
[2] Minton A P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences.Mol Cell Biochemistry, 1983, 55(2):119-140.
[3] Ellis R J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biology, 2001, 11(1):114-119.
[4] 王莉衡, 钦传光, 尚晓娅等. 大分子拥挤环境中溶菌酶的去折叠过程.西北农林科技大学学报, 2009,37(9):187-192. Wang L H, Qin C G, Shang X Y, et al. Journal of Northwest,2009, 37(9): 187-192.
[5] Wang Y, He H, Li S. Effect of Ficoll 70 on thermal stability and structure of creatine kinase. Biochemistry (Mosc), 2010, 75(5): 648-654.
[6] Zhang D L, Wu L J, Chen J, et al. Effects of macromolecular crowding on the structural stability of human α-lactalbumin. Acta Biochim Biophys Sin (Shanghai),2012, 44(8):703-711.
[7] 闫菡, 郭占云, 冯佑民. 大分子拥挤及其对蛋白质折叠的影响.陕西医学杂志, 2003, 32(3):246-247. Yan H, Guo Z Y, Feng Y M. Shaanxi Medical Journal, 2003, 32(3):246-247.
[8] 赵明, 井健, 李森. 大分子拥挤试剂对人肌肌酸激酶折叠途径的影响作用研究. 北京师范大学学报, 2007,43(4):442-446. Zhao M, Jing J, Li S. Journal of Beijing Normal Unieversity, 2007, 43 (4):442-446.
[9] 李剑, 王志珍. 细胞内的大分子拥挤环境. 生物化学与生物物理进展, 2001, 28(6):788-792. Li J, Wang Z Z, Progress in Biochemistry and Biophysics, 2001, 28(6):788-792.
[10] Fan Y Q, Liu H J, Li C, et al. Effects of macromolecular crowding on refolding of recombinant human brain-type creatine kinase.Int J Biol Macromol, 2012, 51(1-2):113-118.
[11] Fan Y Q, Lee J, Oh S, et al. Effects of osmolytes on human brain-type creatine kinase folding in dilute solutions and crowding systems.Int J Biol Macromol, 2012(in press).
[12] McPhie P, Ni Y S, Minton A P. Macromolecular crowding stabilizes the molten globule form of apomyoglobin with respect to both cold and heat unfolding. J Mol Biol, 2006, 361(1):7-10.
[13] Davis-Searles P R, Morar A S, Saunders A J, et al. Sugar-induced molten-globule model. Biochemistry,1998, 37 (48): 17048-17053.
[14] Saunders A J, Davis-Searles P R, Allen D L, et al. Osmolyte-induced changes in protein conformational equilibria.Biopolymers, 2000, 53(4): 293-307.
[15] Morar A S, Olteanu A, Young G B, et al. Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c.Protein Sci, 2001, 10(11): 2195-2199.
[16] Sasahara K, McPhie P, Minton A P. Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol, 2003, 326(4): 1227-1236.
[17] Cole N, Ralston G B. Enhancement of self-association of human spectrin by polyethylene glycol. Int J Biochemistry, 1994, 26(6): 799-804.
[18] Lindner R A, Ralston G B. Effects of dextran on the self-association of human spectrin. Biophys Chemistry, 1995, 57(1): 15-25.
[19] Rivas G, Fernandez J A, Minton A P. Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry, 1999, 38(29): 9379-9388.
[20] Minton A P. Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol, 2000, 10(1): 34-39.
[21] Ptitsyn O B. Molten globule and protein folding. Adv Protein Chem, 1995, 47, 83-229.
[22] Arai M, Kuwajima K. Role of the molten globule state in protein folding. Adv Protein Chem, 2000, 53: 209-282.
[23] Wanker E E. Protein aggregation in Huntington’ s and Parkinson’ s disease: implications for therapy. Mol Med Today, 2000, 6(10): 387-391.
[24] Zhang X P, Liu F, Cheng Z, et al. Cell fate decision mediated by p53 pulses.Proc Natl Acad Sci USA, 2009, 106(30): 12245-12250.
[25] Kim J S, Yethiraj A. Crowding effects on protein association: effect of interactions between crowding agents. J Phys Chem B, 2011, 115(2): 347-353.
[26] Miyoshi D, Nakamura K, Muhui S, et al. Thermodynamics of DNA structures under molecular crowding conditions with neutral and positive charged cosolutes. Nucleic Acids Symp Ser(Oxf), 2008, (52): 413-414.
[27] Livolant F, Amelie L. Condensed phases of DNA: structures and phase transitions. Prog Polym Sci, 1996, 21: 1115-1164.
[28] Bloomfield V A. DNA condensation. Curr Opin Struct Biol, 1996, 6(3): 334-341.
[29] Vitiello L, Chonn A, Wasserman J D, et al. Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells. Gene Ther, 1996, 3(5): 396-404.
[30] De Smedt S C, Demeester J, Hennink W E. Cationic polymer based gene delivery systems. Pharm Res, 2000, 17(2): 113-126.
[31] Marky L A, Kupke D W. Enthalpy-entropy compensations in nucleic acids: contribution of electrostriction and structural hydration. Methods Enzymol, 2000, 323: 419-441.
[32] Spink C H, Chaires J B. Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA. Biochemistry, 1999, 38(1): 496-508.
[33] Nakano S I, Karimata H, Ohmichi T, et al. The effect of molecular crowding with nucleotide length and cosolute structure on DNA duplex stability. J Am Chem Soc, 2004, 126(44): 14330-14331.
[34] Karimata H, Nakano S, Ohmichi T, et al. Stabilization of a DNA duplex under molecular crowding conditions of PEG. Nucleic Acids Symp Ser (Oxf),2004,(48):107-108.
[35] Spink C H, Chaires J B. Selective stabilization of triplex DNA by poly(ethylene glycols). J Am Chem Soc, 1995, 117: 12887-12888.
[36] Goobes R, Minsky A. Thermodynamic aspects of triplex DNA formation in crowded environments. J Am Chem Soc, 2001, 123(50): 12692-12693.
[37] Goobes R, Cohen O, Minsky A. Unique condensation patterns of triplex DNA: physical aspects and physiological implications. Nucleic Acids Res, 2002, 30(10): 2154-2161.
[38] Miyoshi D, Nakamura K, Tateishi-Karimata H, et al. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. J Am Chem Soc, 2009,131(10):3522-3531.
[39] Goobes R, Kahana N. Cohen O, et al. Metabolic buffering exerted by macromolecular crowding on DNA-DNA interactions: origin and physiological significance. Biochemistry, 2003, 42(8): 2431-2440.
[40] Li J, Correia J J, Wang L, et al. Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res, 2005, 33(14): 4649-4659.
[41] Xue Y, Kan Z Y, Wang Q, et al. Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding conditions. J Am Chem Soc, 2007, 129(36): 11185-11191.
[42] Xu L, Feng S, Zhou X. Human telomeric G-quadruplexes undergo dynamic conversion in a molecular crowding environment. Chem Commun, 2011, 47(12): 3517-3519.
[43] Miyoshi D, Nakao A, Sugimoto N. Molecular crowding regulates the structural switch of the DNA G-quadruplex. Biochemistry, 2002, 41(50): 15017-15024.
[44] Zhou Jun, Wei Chunying, Jia Guoqing, et al. The structural transition and compaction of human telomeric G-quadruplex induced by excluded volume effect under cation-deficient conditions. Biophys Chem, 2008,136(2-3):124-127.
[45] Fujimoto T, Nakano S, Miyoshi D, et al. The effects of molecular crowding on the structure and stability of G-quadruplexes with an abasic site. Journal of Nucleic Acids, 2011,(2011):857149-857157.
[46] Zimmerman S B, Minton A P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct, 1993, 22: 27-65.
[47] Zhao S, Zhu Q, Somerville R L. The sigma(70) transcription factor TyrR has zinc-stimulated phosphatase activity that is inhibited by ATP and tyrosine. J Bacteriol, 2000, 182(4):1053-1061.
[48] Poon J, Bailey M, Winzor D J, et al. Effects of molecular crowding on the interaction between DNA and the Escherichia coli regulatory protein TyrR. Biophys J, 1997, 73(6):3257-3264.
[49] Grzegorz Wieczorek, Piotr Zielenkiewicz. Influence of macromolecular crowding on protein-protein association rates—a Brownian dynamics study. Biophys J, 2008,95(11): 5030-5036.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[3] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[6] TANG Yue-wei,LIU Zhi-ping. Drug-target Affinity Prediction Based on Deep Learning and Multi-layered Information Fusion[J]. China Biotechnology, 2021, 41(11): 40-47.
[7] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[8] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[9] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[10] CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles[J]. China Biotechnology, 2020, 40(4): 78-83.
[11] WANG Ke-ru,ZHU Hong-liang. Functions of RNA Editing Factors and Its Mechanisms in Plant Organelles[J]. China Biotechnology, 2020, 40(3): 125-131.
[12] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[13] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[14] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[15] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.