Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (12): 86-92    DOI:
    
Innate Immune Recognition of the Pathogenic Fungus by Toll-Like Receptors
HE Xiao-bing, JIA Huai-jie, JING Zhi-zhong
State Key Laboratory of Veterinary Etiological Biology Key Laboratory of Veterinary Public Health of Ministry of Agriculture Lanzhou Veterinary Research Institute CAAS, Lanzhou 730046, China
Download: HTML   PDF(446KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Innate immune system is the first line of defense against invading pathogens. Toll-like receptors (TLRs) are important components of pattern-recognition receptors (PRRs) of the innate immune system, which enable early recognition of pathogen-associated molecular patterns (PAMPs) derived from pathogenic fungus. This recognition triggers the innate immune responses to assure host protection through the induction of inflammatory cytokines, and chemokines and maturation of immune cells. By introducing the TLRs and relevant signaling pathways, the current research status and application prospects of the recognition of fungal pathogens and activation of corresponding signaling pathways through TLRs were summarized and discussed, and the references for the molecule interactions between innate immune system and pathogenic fungus were provided also in future studies.

Key wordsInnate immunity      Pattern-recognition receptors      Pathogen-associated molecular patterns      Toll-like receptors      Pathogenic fungus     
Received: 03 September 2012      Published: 25 December 2012
ZTFLH:  Q819  
Cite this article:

HE Xiao-bing, JIA Huai-jie, JING Zhi-zhong. Innate Immune Recognition of the Pathogenic Fungus by Toll-Like Receptors. China Biotechnology, 2012, 32(12): 86-92.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I12/86

[1] Cunha C, Carvalho A, Esposito A, et al. DAMP signaling in fungal infections and diseases. Front Immunol, 2012, 3: 286.
[2] Romani L. Immunity to fungal infections. Nat Rev Immunol, 2011, 11: 275- 288.
[3] Leibund Gut-Landmann S, Wüthrich M, Hohl T. Immunity to fungi. Curr Opin Microbiol, 2012, 24(4): 449-458.
[4] Wüthrich M, Deepe G S, Klein B. Adaptive immunity to fungi. Annu Rev Immunol, 2012, 30: 115-148.
[5] Netea M G, Marodi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol, 2010, 31(9): 346-353.
[6] Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol, 2004, 172(5): 3059-3069.
[7] Netea M G, Van Der Graaf C A, Vonk A G, et al. The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated Candidiasis. J Infect Dis, 2002, 185(10): 1483- 1489.
[8] 陈兴平, 熊瑛, 黄朝卫. Toll样受体4在小鼠系统性白念珠菌感染中的作用. 中华皮肤科杂志,2005,38 (8): 509-511. Chen X P, Xiong Y, Huang C W. The role of toll-like receptor 4 in systemic candidiasis in murine model. Chinese Journal of Dermatology, 2005, 38 (8): 509-511.
[9] Netea M G, Sutmuller R, Hermann C V, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol, 2004, 172(6): 3712-3718.
[10] Sutmuller R P, den Brok M H, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest, 2006, 116(2): 485- 494.
[11] Villamon E, Gozalbo D, Roig P, et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect, 2004, 6(1): 1-7.
[12] Roeder A, Kirschning C J, Schaller M, et al. Induction of nuclear factor-kappaB and c-Jun/ activator protein-1 via toll-like receptor 2 in macrophages by antimycotic-treated Candida albicans. J Infect Dis, 2004, 190(7): 1318-1326.
[13] Van der Graaf C A, Netea M G, Verschueren I, et al. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blast oconidia and hyphae. J Clin Invest, 2006, 116 (6): 1642-1650.
[14] Zhang S, Li J, Jia X, et al. The expression of toll-like receptor and 4 mRNA in local tissues of model of oropharyngeal candidasis in mice. J Huazhong Univ Sci Technol Med Sci, 2004, 24 (6): 639-641.
[15] Kasperkovitz P V, Khan N S, Tam J M, et al. Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun, 2011, 79(12): 4858-4867.
[16] Biondo C, Signorino G, Costa A, et al. Recognition of yeast nucleic acids triggers a host protective type I interferon response. Eur J Immunol, 2011, 41(7): 1969 -1979.
[17] Bourgeois C, Majer O, Frohner I E, et al. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol, 2011, 186(5): 3104-3112.
[18] Plantinga T S, Johnson M D, Scott W K, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. The Journal of Infectious Diseases, 2012, 205(6): 934-943.
[19] Bochud P Y, Chien J W, Marr K A, et al. Toll-like receptor 4 polymorphisms and Aspergillosis in stem-cell transplantation. N Engl J Med, 2008, 359(17): 1766-1777.
[20] Netea M G, Warris A, Van der Meer J W, et al. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis, 2003, 188(2): 320-326.
[21] Wang J E, Warris A, Ellingsen E A, et al. Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun, 2001, 69(4): 2402-2406.
[22] Balloy V, SI-tahar M, Takeuchi O, et al. Involvement of Toll-Like receptor in experimental invasive pulmonary Aspergillosis. Infect Immun, 2005, 73(9): 5420-5425.
[23] Mambula S S, Sau K, Henneke P, et al. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem, 2002,277(42): 39320-39326.
[24] Meier A, Kirschning C J, Nikolaus T, et al. Toll-like receptor (TLR) 2 and TLR4 are essential for aspergillus-induced activation of murine macrophages. Cell Microbiol, 2003, 5 (8): 561- 570.
[25] Zhao J, Wu X Y. Triggering of toll-like receptors 2 and 4 by Aspergillus fumigatus conidia in immortalized human corneal epithelial cells to induce inflammatory cytokines. Chin Med J, 2008, 121 (5): 450-454.
[26] Dubourdeau M, Athman R, Balloy V, et al. Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol, 2006, 177(6): 3994-4001.
[27] Rubino I, Coste A, Le Roy D, et al. Species-specific recognition of Aspergillus fumigatus by Toll-like receptor 1 and Toll-like receptor 6. J Clin Invest, 2012, 205(6): 944-954.
[28] Rubino I, Coste A, Le Roy D, et al. Toll-like receptor 9-dependent immune activation by unmethylated CpG Motifs in Aspergillus fumigatus DNA. Infect Immun, 2008, 76 (5): 2123-2129.
[29] Carvalho A, De Luca A, Bozza S, et al. TLR3 essentially promotes protective class I- restricted memory CD8+T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119(4): 967-977.
[30] Ellerbroek P M, Ulfman L H, Hoepelman A I, et al. Cryptococcal glucuronoxylomannan interferes with neutrophil rolling on the endothelium. Cell Microbiol, 2004, 6 (6): 581-592.
[31] Monari C, Pericolini E, Bistoni G, et al. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of Fas ligand in macrophages. J Immunol, 2005, 174 (6): 3461-3468.
[32] Ferreira K S, Bastos K R, Russo M, et al. Interaction between Paracoccidioides brasiliensis and pulmonary dendritic cells induces Interleukin-10 production and Toll-like receptor-2 expression: possible mechanisms of susceptibility. J Clini Invest, 2007, 196 (7): 1108-1115.
[33] Loures F V, Pina A, Felonato M, et al. TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol, 2009, 183(): 1279-1290.
[34] Aravalli R N, Hu S, Woods J P, et al. Histoplasm a capsulatum yeast phase-specific protein Yps3p induces Toll-like receptor 2 signaling. J Neuroinflammation, 2008, 5: 30.
[35] Carlos I Z, Sassá M F, da Graoa Sgarbi D B, et al. Current research on the immune response to experimental sporotrichosis. Mycopathologia, 2009, 168 (1): 1-10.
[36] 赵文杰,席丽艳,马黎,等. 马尔尼菲青霉对巨噬细胞模式识别受体 TLR-2、TLR-4、Dectin-1的表达及TNF-α分泌的影响. 南方医科大学学报,2008,28 (1): 37-40. Zhao W J, Xi L Y, Ma L, et al. Effect of Penicillium marneffei on TLR-2, TLR-4, and Dectin-1 expression and TNF-α production in macrophages. Journal of Southern Medical University, 2008, 28 (1): 37-40.
[37] Drummond R A, Brown G D. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol, 2011, 14(4): 392-399.
[38] Vautier S, MacCallum D M, Brown G D. C-type lectin receptors and cytokines in fungal immunity. Cytokine, 2012, 58(1):89-99.
[39] Gantner B N, Simmons R M, Canavera S J, et al. Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med, 2003, 197(7): 1107-1117.
[40] Takahara K, Yashima Y, Omatsu Y, et al. Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int Immunol, 2004, 16(6): 819-829.
[41] Wüthrich M, Deepe G S, Klein B. Adaptive immunity to fungi. Annu Rev Immunol, 2012, 30: 115-148.
[42] Viriyakosol S, Fierer J, Brown G D, et al. Innate immunity to the pathogenic fungus Coccidioides posadasiiis dependent on toll-like receptor 2 and dectin-1. Infect Immun, 2005, 73(3): 1553-1560.
[43] Moretti S, Bellocchio S, Bonifazi P, et al. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol, 2008, 10:156-168.
[1] CHEN Qing, ZHU Hong-fei, GUO Xiao-yu. Progress on DNA Innate Immune Recognition Receptors[J]. China Biotechnology, 2016, 36(5): 112-117.
[2] WANG Tao, DU Li, MA Qiong, CUI Yu-fang. Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans[J]. China Biotechnology, 2011, 31(7): 121-125.
[3] SUN Ying-jun, ZHANG Yan, WU Qiong, ZHENG Hai-xue, ZHANG Zhi-dong. The Progress of Study on Innate Immunity Led to the Design and Development of More Specific and Focused Adjuvants[J]. China Biotechnology, 2011, 31(03): 87-90.
[4] SHI Chun-Lin . Multiple Roles of Antimicrobial Peptides in Host Denfence[J]. China Biotechnology, 2008, 28(4): 82-86.