Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (12): 52-58    DOI:
    
Traits Analysis of Maize with the Psy and Lycb
YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei
School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(732KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Two genetically modified Tianta 5 inbred maize lines transfected with Lmpsy and Lmlycb were made. And they were treated as the experimental groups. While the normal Tianta 5 inbred maize was used as control group. The photosynthetic rate, the carotenoid concentration, the plant character, the yield, and the biomass of each group were detected. Then the data were analyzed statistically. The results indicated that transfected with the gene of carotenoid metabolism key enzyme, the Tianta 5 inbred maize would be improved in the following respects: the carotenoid concentration, the photosynthetic rate, the accumulated stock of photosynthetic products, the reduction of light pollution.

Key wordsMaize      Photosynthetic rate      Carotinoid      Biomass     
Received: 30 July 2012      Published: 25 December 2012
ZTFLH:  Q786  
Cite this article:

YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei. Traits Analysis of Maize with the Psy and Lycb. China Biotechnology, 2012, 32(12): 52-58.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I12/52

[1] 孙学辉, 敖光明: 高赖氨酸基因导入玉米自交系的研究. 农业生物技术学报 2001, 9(2):156-158. Sun X H,Ao G M. Transfer of high lysine-rich gene into maize inbred lines and the detection of transgenic plants.Journal of Agricultural Biotechnology, 2001, 9(2):156-158.
[2] Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell & Environment, 2006, 29(3):435-445.
[3] Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002, 128(2):439-453.
[4] Jahns P, Holzwarth A R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2011, 553(9):529-539.
[5] Havaux M, Dall’Osto L, Bassi R. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 2007, 145(4):1506-1520.
[6] Jahns P, Holzwarth A R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011,553(9):529-539.
[7] Zhang J, Tao N, Xu Q, et al. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep, 2009, 28(11): 1737-1746.
[8] 季静,王罡.来自龙胆草 (Getina lutea)的5个类胡萝卜素生物相关酶基因对类胡萝卜素生物合成量影响的差异.农业技术生物学报,2002,10(3):62-63. Ji J,Wang G. Different influence of biomass of maize transfected with the gene of five carotenoid metabolism enzymes from Getina lutea.Journal of Agricultural Biotechnology, 2002,10(3):62-63.
[9] Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of β-carotene and lycopene content in tomato fruit. Plant J, 2000,24:413-419
[10] Dharmapuri S, Rosati C, Pallara P,et al. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett, 2002, 519(1-3): 30-34.
[11] 梁燕,王鸣,陈杭,等.番茄红素β-环化酶反义RNA基因对烟草的遗传转化. 西北农林科技大学学报(自然科学版),2003,31(3):73-76. Liang Y,Wang M,Chen H, et al. Transformation analysis of antisense RNA of Lmlycb in tobacco. Journal of Northwest A & F University(Natural Science Edition), 2003,31(3):73-76.
[12] Crafts-Brandner S J, Salvucci M E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 2002,129(4): 1773-1780.
[13] 荆绍凌, 孙志超, 李淑华. 转基因技术在玉米种质改良中的应用. 中国种业, 2009,(8):11-13. Jing S L,Sun Z C,Li S H. Application of transformation technology to improve maize germplasm.China Seed Industry, 2009,(8):11-13.
[14] Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002, 128(2): 439-453.
[15] Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J, 2000, 24(3): 413-420
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[3] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[6] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[7] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[8] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[9] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[10] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[11] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[12] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[13] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[14] You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development[J]. China Biotechnology, 2018, 38(1): 88-99.
[15] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.