Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (06): 144-150    DOI: Q555+.4
    
Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase
LI Zhao-feng1,2,GU Zheng-biao1,2,DU Guo-cheng1,3,WU Jing1,3,CHEN Jian1,3
1.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2.School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
3.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(879KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the applications of cyclodextrins expanding in the industries related to food, pharmaceuticals, etc, cyclodextrin glycosyltransferase (CGTase), the essential enzyme for the production of cyclodextrins, has become the focus of scientific research nowadays. Especially in recent twenty years, CGTase has been studied extensively, leading to increasing knowledge of its structure and function. Firstly the function and structural characteristics of CGTase were focused on. CGTase is a multifunctional enzyme. It can catalyze three transglycosylation reactions (disproportionation, cyclization, and coupling), and a hydrolysis reaction. The specific CGTase reaction is the cyclization reaction, which can result in the formation of a cyclodextrin. CGTase is a member of the α-amylase family of glycosyl hydrolases. α-Amylases generally consist of three structural domains, A, B, and C, while CGTases show a similar domain organization with two additional domains, D and E. In addition, substrate binding of CGTase and mechanisms of transglycosylation and cyclization reactions catalyzed by CGTase were discussed in detail. Domain B contributes to substrate binding by providing several amino acid side chains alongside a substrate binding groove on the surface of the CGTase protein. Maltose binding site assists in guiding the linear starch chains into the substrate binding groove containing at least nine subsites. After the glycosidic bond cleavage reaction has taken place between subsites +1 and -1, the non-reducing end of the oligosaccharide at the groove is transferred to the reducing end of the same oligosaccharide chain, leading to cyclic products.



Key wordsCyclodextrin      Cyclodextrin glycosyltransferase      Structural characteristics      Catalytic mechanism      Cyclization reaction     
Received: 19 January 2010      Published: 12 June 2010
Corresponding Authors: Zhaofeng Li     E-mail: zhengbiaogu@yahoo.com.cn;zfli@jiangnan.edu.cn
Cite this article:

LI Zhao-Feng, GU Zheng-Biao, DU Guo-Cheng, TUN Jing, CHEN Jian. Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase. China Biotechnology, 2010, 30(06): 144-150.

URL:

https://manu60.magtech.com.cn/biotech/Q555+.4     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I06/144

[1] Li Z F, Wang M, Wang F, et al. γCyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol, 2007, 77(2): 245255. 
[2] van de Manakker F, Vermonden T, van Nostrum C F, et al. Cyclodextrinbased polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules, 2009, 10(12): 31573175. 
[3] Tonkova A. Bacterial cyclodextrin glucanotransferase. Enzyme Microb Tech, 1998, 22: 678686. 
[4] Li Z F, Zhang J Y, Sun Q, et al. Mutations of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhance βcyclodextrin specificity. J Agri Food Chem, 2009, 57(18): 83868391. 
[5] Li Z F, Zhang J Y, Wang M, et al. Mutations at subsite3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing αcyclodextrin specificity. Appl Microbiol Biotechnol, 2009, 83(3): 483490. 
[6] Kelly R M, Dijkhuizen L, Leemhuis H. The evolution of cyclodextrin glucanotransferase product specificity. Appl Microbiol Biotechnol, 2009, 84(1): 119133. 
[7] 丁闰蓉, 李兆丰, 李金根, 等. 表面活性剂对大肠杆菌胞外生产α环糊精葡萄糖基转移酶的影响. 中国生物工程杂志, 2009, 29(7): 6166. Ding R R, Li Z F, Li J G, et al. China Biotechnology, 2009, 29(7): 6166. 
[8] 李兆丰. 软化类芽孢杆菌α环糊精葡萄糖基转移酶在大肠杆菌中的表达及其产物特异性分析. 无锡:江南大学, 食品学院, 2009. Li Z F. Expression of αcyclodextrin glycosyltransferase from Paenibacillus macerans in Escherichia coli and analysis of its product specificity. Wuxi: Jiangnan University, School of Food Science and Technology, 2009. 
[9] van der Veen B A, van Alebeek G J, Uitdehaag J C, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. Eur J Biochem, 2000, 267(3): 658665. 
[10] Uitdehaag J C M, Veen B A, Dijkhuizen L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the αamylase family. Enzyme Microb Tech, 2002, 30:295304. 
[11] Terada Y, Yanase M, Takata H, et al. Cyclodextrins are not the major cyclic α1,4glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J Biol Chem, 1997, 272(25): 1572915733. 
[12] van der Veen B A, Uitdehaag J C, Dijkstra B W, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta, 2000, 1543(2): 336360. 
[13] Zheng M Y, Endo T, Zimmermann W. Synthesis of largering cyclodextrins by cyclodextrin glucanotransferases from bacterial isolates. J Incl Phenom Macrocycl Chem, 2002, 44:387390. 
[14] Kometani T, Terada Y, Nishimura T, et al. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties. Biosci Biotechnol Biochem, 1994, 58:19901994. 
[15] Lee Y H, Baek S G, Shin H D, et al. Transglycosylation reaction of cyclodextrin glucanotransferase in the attrition coupled reaction system using raw starch as a donor. Kor J Appl Microbiol Biotechnol, 1993, 21:461467. 
[16] Shimoda K, Sato D, Hamada H. Synthesis of βmaltooligosaccharides of αtocopherol derivatives by xanthomonas campestris and cyclodextrin glucanotransferase and their antiallergic activity. Chem Lett, 2009, 38(3): 930931. 
[17] Qi Q, Zimmermann W. Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol, 2005, 66(5): 475485. 
[18] Kometani T, Nishimura T, Nakae T, et al. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci Biotechnol Biochem, 1996, 60:645649. 
[19] Bruinenberg PM, Hulst A C, Faber A, et al. A process for surface sizing or coating paper. Eur Patent, P1995000201751,1996. 
[20] Klein C, Schulz G E. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol, 1991, 217(4): 737750. 
[21] Janecek S. Parallel β/αbarrels of αamylase, cyclodextrin glycosyltransferase and oligo1,6glucosidase versus the barrel of βamylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett, 1994, 353(2): 119123. 
[22] Janecek S. New conserved amino acid region of alphaamylases in the third loop of their (β/α)8barrel domains. Biochem J, 1992, 288 ( Pt 3): 10691070. 
[23] Rimphanitchayakit V, Tonozuka T, Sakano Y. Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity. Carbohydr Res, 2005, 340(14): 22792289. 
[24] Penninga D, van der Veen B A, Knegtel R M, et al. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem, 1996, 271(51): 3277732784. 
[25] Strokopytov B, Knegtel R M, Penninga D, et al. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity. Biochemistry, 1996, 35(13): 42414249. 
[26] Bender H. Studies of the mechanism of the cyclisation reaction catalysed by the wildtype and a truncated αcyclodextrin glycosyltransferase from Klebsiella pneumoniae strain M 5 al, and the βcyclodextrin glycosyltransferase from Bacillus circulans strain 8. Carbohydr Res, 1990, 206(2): 257267. 
[27] Wind R D, Uitdehaag J C, Buitelaar R M, et al. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem, 1998, 273(10): 57715779. 
[28] Lawson C L, van Montfort R, Strokopytov B, et al. Nucleotide sequence and Xray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltosedependent crystal form. J Mol Biol, 1994, 236(2): 590600. 
[29] Uitdehaag J C, Kalk K H, van Der Veen B A, et al. The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γcyclodextrinCGTase complex at 1.8A resolution. J Biol Chem, 1999, 274(49): 3486834876. 
[30] McCarter J D, Withers S G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol, 1994, 4(6): 885892. 
[31] Strokopytov B, Penninga D, Rozeboom H J, et al. Xray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry, 1995, 34(7): 22342240. 
[32] Qian M, Haser R, Buisson G, et al. The active center of a mammalian αamylase. Structure of the complex of a pancreatic αamylase with a carbohydrate inhibitor refined to 2.2A resolution. Biochemistry, 1994, 33(20): 62846294. 
[33] Brzozowski A M, Davies G J. Structure of the Aspergillus oryzae αamylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry, 1997, 36(36): 1083710845. 
[34] Parsiegla G, Schmidt A K, Schulz G E. Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γcyclodextrin production. Eur J Biochem, 1998, 255(3): 710717. 
[35] van der Veen B A, Uitdehaag J C, Penninga D, et al. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase αcyclodextrin production. J Mol Biol, 2000, 296(4): 10271038. 
[36] 张佳瑜, 吴丹, 李兆丰, 等. 来源于软化芽孢杆菌的环糊精葡萄糖基转移酶在毕赤酵母和枯草杆菌中的表达. 生物工程学报, 2009, 25(12): 19481954. Zhang J Y, Wu D, Li Z F, et al. Chinese Journal of Biotechnology, 2009, 25(12): 19481954. 
[37] 成成, 李兆丰, 李彬, 等. 利用重组大肠杆菌生产α环糊精葡萄糖基转移酶. 生物加工过程, 2009, 7(3): 5663. Cheng C, Li Z F, Li B, et al. Chinese Journal of Bioprocess Engineering, 2009, 7(3): 5663.
 [38] 胡静, 陈育如, 魏霞, 等. 高产环糊精葡萄糖基转移酶的枯草芽孢杆菌选育、产酶与酶学特性. 食品与生物技术学报, 2008, 27(4): 97102. Hu J, Chen Y R, Wei X, et al. Journal of Food Science and Biotechnology, 2008, 27(4): 97102.

[1] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[2] HU Fu,LI Qian,ZHU Ben-Wei,NING Li-Min,YAO Zhong,SUN Yun,DU Yu-guang. Research Progress in Ulvan Lyase[J]. China Biotechnology, 2019, 39(8): 104-113.
[3] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[4] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[5] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[6] GUO Yong hua, CHEN Ji chen, CAI Hai song, CHEN Long jun, LIN Xin jian. Saturated Mutation Effects on Catalytic Efficiency and Product Specificity of Starch Binding Site N623 of Cyclodextrin Glucanotransferase from Geobacillus sp. CHB1[J]. China Biotechnology, 2016, 36(11): 30-38.
[7] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[8] CHEN Xing-yu, XIN Jian-yu, LI Jian-shu. The Applications of Cyclodextrins and Their Derivatives in Non-injection Administration Systems of Peptide/Protein Drugs[J]. China Biotechnology, 2010, 30(12): 111-115.
[9] CHENG Jing, TUN Dan, CHEN Cheng, TUN Jing, CHEN Jian. Effect of Complex and Synthetic Medium on Extracellular Production of α-Cyclodextrin Glycosyltransferase in E.coli[J]. China Biotechnology, 2010, 30(09): 36-42.
[10] ZHANG Bin- Jia-Yong-Zhen- Fan-Zhong-Hua- Qi-Qiang-Sheng. A Rapid and Direct Detection of Cyclodextrins in the Fermentation Fluid by HPAEC1[J]. China Biotechnology, 2009, 29(05): 95-98.
[11] chao ya-peng Shi-jun QIAN. Immobilization of an α-Cyclodextrin glucanotransferase from Bacillus sp.602-1 and its characterization[J]. China Biotechnology, 2009, 29(01): 34-38.
[12] Jun-ying WANG chao ya-peng Dong-ming Guan Shi-jun QIAN. Studies on the purification and characterization of an α-cyclodextrin glucanotransferase[J]. China Biotechnology, 2008, 28(7): 67-70.