Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (12): 7-12    DOI:
    
The Experimental Study of Repairing Laryngic Catilage Defect by Transplanting the Compound of Bone Mesenchymal Stem Cells and PLGA Porous Foam Scaffolds
MA Lin-xiang1,CUI Ying2,ZHU Li-ming1,PAN Xin-yu1,WANG Xue-feng2,ZHANG Ben2
1.Department of Otolaryngology in Liaoning Medical College,Jinzhou 121001,China
2.Department of Otolaryngology,The First Affiliated Hospital of Liaoning Medical College,Jinzhou 121001,China
Download: HTML   PDF(1356KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To evaluate the feasibility of repairing laryngic catilage deffect by mesenchymal stem cells and PLGA porous foam scaffolds under the effect of cartilage-derived morphogenetic protein 1 and transforming growth factor-β1 by tissue engineering techniques. Methods:In vitro ,under the effect of CDMP1 and TGF-β1 ,BMSCs and PLGA porous foam scaffolds were cultured to investigace the expression of cartilaginous phenotype The histological staining for glycosaminoglycan using alcian blue dye-binding method and immunohistochemical staining of cartilage-specific protein collagen Ⅱ were used to identify chondrogenic differentiation of BMSCs. Results:BMSCs cultured in the medium containing CDMP1 and TGF-β1 expressed collagen Ⅱ and glycolsaminoglycan. Transplanted into the body ,BMSCs - Biology stent can repair laryngic cartilage defects. Conclusion:under the dffect of CDMP1 and TGF-β1,BMSCs-Biology stent can differentiate into the chondrogenic phenotype and can effectively repair laryngic cartilage defects.



Key wordsDifferentiation      Bone marrow mesenchymal stem cells      Bone morphogenetic proteins-1      Transforming growth factor-β1      PLGA     
Received: 06 July 2009      Published: 21 December 2009
ZTFLH:  Q819  
Cite this article:

MA Lin-Xiang, CUI Ying, SHU Li-Meng, BO Xin-Yu, WANG Xue-Feng, ZHANG Ben. The Experimental Study of Repairing Laryngic Catilage Defect by Transplanting the Compound of Bone Mesenchymal Stem Cells and PLGA Porous Foam Scaffolds. China Biotechnology, 2009, 29(12): 7-12.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I12/7

[1]   Pittenger M F,Mackay A M,Beck S C,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284(5411):143~147
[2]   Eric Steck,Helge Bertram,Rainer Abel,et al.Induction of intervertebral disclike cells from adult mesenchymal stem cells. Stem Cells, 2005,23:403~411
[3]   Bai X W, Xia Z F, Pan Y Q, et al. Cartilagederived morphogenetic protein1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochemical and Bilphysical Research Communcations, 2004,325(2):453~460
[4]   Cui Y, Wang H.Differentiation plasticity of human fetal articular chondrcytes.Otolaryngology Head and Neck Surgery, 2006,135(1):61~67
[5]   Francisco ArnalichMontiel, Silvia Pastor, Alejandro BlazquezMartinez, et al. Adiposederived stem cells are a source for cell therapy of the corneal stroma.Stem Cells, 2008,26:570~579
[6]   Christian Elabd, Armelle Basillais, Hélène Beaupied, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells, 2008,26: 2399~2407
[7]   Bartlett W,Gooding C R,Carrington R W J,et al.Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft.Journal of Bone and Joint Surgery,1987(3):330~332
[8]   Bochev I, Elmadjian G, Kyurkchiev D,et al. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogenstimulated Bcell immunoglobulin production in vitro. Cell Biology International,2008:32(4):384~393
[9]   Quinn T M,Hunziker E B,Hauselmann H J.Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee.Osteoarthritis Cartilage,2005,13(8):672~678
[10]   Ruszymah B H,Chua K,Latif M A,et al.Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support.Int J Pediatr Otorhinolaryngol,2005,69(11):1489~1495
[1] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[2] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[3] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[4] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[5] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[6] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[7] Yu CHENG,Qiong SHI,Li-qin AN,Meng-tian FAN,Gai-gai HUANG,Ya-guang WENG. BMP7 Gene Silencing Inhibits Osteogenic Differentiation of Porcine Arotic Valve Interstitial Cells Induced by Osteogenic Induction Medium[J]. China Biotechnology, 2019, 39(5): 63-71.
[8] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[9] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[10] Guang-ran LI,Wei WANG. Research Progress of Small Molecule Compounds in Neural Differentiation of Stem Cells[J]. China Biotechnology, 2018, 38(3): 76-80.
[11] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[12] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.
[13] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[14] YUAN Ya-hong, ZHAO Shan-shan, WANG Xiao-li, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. HIV-1 Tat Protein Inhibits the Hematopoiesis Support Function of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(6): 1-8.
[15] LI Li-li, WEI Qi-yan, WANG Yan-fang, HE Zhong-mei, GAO Yu-gang, MA Ji-sheng. Research Progress of FGF/FGFR Signaling Regulating Osteoblast Differentiation[J]. China Biotechnology, 2017, 37(6): 107-113.