Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (02): 127-133    DOI: Q819
    
Progress in Research Techniques of Protein S-nitrosylation and Its Role in Plant Disease Resistance
1.Beijing Forestry University, Beijing 100083, China
2.Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China
Download: HTML   PDF(752KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

S-nitrosylation, the covalent attachment of an Nitric oxide (NO) moiety to Cys residues of proteins, resulting in the formation of S-nitrosothiols(SNO), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. S-nitrosylation has been shown to regulate the function of many proteins which are involved in a wide array of cellular activities. The growing body of evidence now suggested that S-nitrosylation may also have a centrol function in plant disease resistance.The basic concepts of S-nitrosylation, the detection methods, functional studies and the recent progress of S-nitrosylation in plant disease resistance were summarized.



Key wordsS-nitrosylation      Denitrosylation      NO      Plant disease resistance     
Received: 09 September 2009      Published: 26 February 2010
Fund:  

the National Natural Science Foundation of China

Cite this article:

CHEN Chen, CHEN Cuan, CHU Cheng-Cai, WANG Xi-Qin. Progress in Research Techniques of Protein S-nitrosylation and Its Role in Plant Disease Resistance. China Biotechnology, 2010, 30(02): 127-133.

URL:

https://manu60.magtech.com.cn/biotech/Q819     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I02/127

[1] Hess D T, Matsumoto A, Kim S O, et al. Protein Snitrosylation: purview and parameters. Nat Rev Mol Cell Biol, 2005, 6 (2):150166. 
[2] Stamler J S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell, 1994, 78 (6):931936. 
[3] Guo F Q, Okamoto M, Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 2003, 302 (5642):100103. 
[4] Grennan A K. Protein Snitrosylation: potential targets and roles in signal transduction. Plant Physiol, 2007, 144 (3):12371239. 
[5] Stamler J S, Simon D I, Osborne J A, et al. Snitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A, 1992, 89 (1):444448. 
[6] Lindermayr C, Saalbach G, Durner J. Proteomic identification of Snitrosylated proteins in Arabidopsis. Plant Physiol, 2005, 137 (3):921930. 
[7] Kim S O, Merchant K, Nudelman R, et al. OxyR: a molecular code for redoxrelated signaling. Cell, 2002, 109 (3):383396. 
[8] Iwakiri Y, Satoh A, Chatterjee S, et al. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein Snitrosylation and protein trafficking. Proc Natl Acad Sci U S A, 2006, 103 (52):1977719782. 
[9] Gaston B, Singel D, Doctor A, et al. Snitrosothiol signaling in respiratory biology. Am J Respir Crit Care Med, 2006, 173 (11):11861193. 
[10] Stamler J S, Toone E J, Lipton S A, et al. (S)NO signals: translocation, regulation, and a consensus motif. Neuron, 1997, 18 (5):691696. 
[11] Zhang H, Xu Y, Joseph J, et al. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2: EPR SPIN trapping studies. J Biol Chem, 2005, 280 (49):4068440698. 
[12] Mannick J B, Schonhoff C, Papeta N, et al. SNitrosylation of mitochondrial caspases. J Cell Biol, 2001, 154 (6):11111116. 
[13] Doctor A, Platt R, Sheram M L, et al. Hemoglobin conformation couples erythrocyte Snitrosothiol content to O2 gradients. Proc Natl Acad Sci U S A, 2005, 102 (16):57095714. 
[14] Mannick J B, Hausladen A, Liu L, et al. Fasinduced caspase denitrosylation. Science, 1999, 284 (5414):651654. 
[15] McMahon T J, Moon R E, Luschinger B P, et al. Nitric oxide in the human respiratory cycle. Nat Med, 2002, 8 (7):711717. 
[16] Gow A, Doctor A, Mannick J, et al. SNitrosothiol measurements in biological systems. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 851 (12):140151. 
[17] Gow A J, Chen Q, Hess D T, et al. Basal and stimulated protein Snitrosylation in multiple cell types and tissues. J Biol Chem, 2002, 277 (12):96379640. 
[18] Lee S J, Lee J R, Kim Y H, et al. Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom, 2007, 21 (17):27972804. 
[19] Jaffrey S R. Detection and characterization of protein nitrosothiols. Methods Enzymol, 2005, 396 105118. 
[20] Jaffrey S R, Snyder S H. The biotin switch method for the detection of Snitrosylated proteins. Sci STKE, 2001, 2001 (86):PL1. 
[21] Huang B, Chen C. An ascorbatedependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med, 2006, 41 (4):562567. 
[22] Han P, Chen C. Detergentfree biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of Snitrosylated proteins. Rapid Commun Mass Spectrom, 2008, 22 (8):11371145. 
[23] Santhanam L, Gucek M, Brown T R, et al. Selective fluorescent labeling of Snitrosothiols (SFLOS): a novel method for studying Snitrosation. Nitric Oxide, 2008, 19 (3):295302. 
[24] Han P, Zhou X, Huang B, et al. Ongel fluorescent visualization and the site identification of Snitrosylated proteins. Anal Biochem, 2008, 377 (2):150155. 
[25] Perazzolli M, Dominici P, RomeroPuertas M C, et al. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell, 2004, 16 (10):27852794. 
[26] Leiper J, MurrayRust J, McDonald N, et al. Snitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci U S A, 2002, 99 (21):1352713532. 
[27] Hao G, Xie L, Gross S S. Argininosuccinate synthetase is reversibly inactivated by Snitrosylation in vitro and in vivo. J Biol Chem, 2004, 279 (35):3619236200. 
[28] Belenghi B, RomeroPuertas M C, Vercammen D, et al. Metacaspase activity of Arabidopsis thaliana is regulated by Snitrosylation of a critical cysteine residue. J Biol Chem, 2007, 282 (2):13521358. 
[29] Lindermayr C, Saalbach G, Bahnweg G, et al. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein Snitrosylation. J Biol Chem, 2006, 281 (7):42854291. 
[30] Hara M R, Agrawal N, Kim S F, et al. Snitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol, 2005, 7 (7):665674. 
[31] Wang Y Q, Feechan A, Yun B W, et al. Snitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem, 2009, 284 (4):21312137. 
[32] RomeroPuertas M C, Laxa M, Matte A, et al. Snitrosylation of peroxiredoxin II E promotes peroxynitritemediated tyrosine nitration. Plant Cell, 2007, 19 (12):41204130. 
[33] Zeidler D, Zahringer U, Gerber I, et al. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A, 2004, 101 (44):1581115816. 
[34] Crawford N M, Tischner R, Heimer Y M,et al.Plant nitric oxide synthase: back to square one. Trends in Plant Science, 2006, 11 (11):526527. 
[35] Moreau M, Lee G I, Wang Y, et al. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitricoxide synthase. J Biol Chem, 2008, 283 (47):3295732967. 
[36] Richardson G, Benjamin N. Potential therapeutic uses for Snitrosothiols. Clin Sci, 2002, 102 (1):99105. 
[37] Rocks S A, Davies C A, Hicks S L, et al. Measurement of Snitrosothiols in extracellular fluids from healthy human volunteers and rheumatoid arthritis patients, using electron paramagnetic resonance spectrometry. Free Radic Biol Med, 2005, 39 (7):937948. 
[38] Boullerne A I, Rodriguez J J, Touil T, et al. AntiSnitrosocysteine antibodies are a predictive marker for demyelination in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neurosci, 2002, 22 (1):123132. 
[39] Liu L, Hausladen A, Zeng M, et al. A metabolic enzyme for Snitrosothiol conserved from bacteria to humans. Nature, 2001, 410 (6827):490494. 
[40] Feechan A, Kwon E, Yun B W, et al. A central role for Snitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A, 2005, 102 (22):80548059. 
[41] Rusterucci C, Espunya M C, Diaz M, et al. Snitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol, 2007, 143 (3):12821292. 
[42] Derakhshan B, Hao G, Gross S S. Balancing reactivity against selectivity: the evolution of protein Snitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res, 2007, 75 (2):210219. 
[43] Broillet M C. Snitrosylation of proteins. Cell Mol Life Sci, 1999, 55 (89):10361042. 
[44] Benhar M, Stamler J S. A central role for Snitrosylation in apoptosis. Nat Cell Biol, 2005, 7 (7):645646. 
[45] Wang Y, Liu T, Wu C, et al. A strategy for direct identification of protein Snitrosylation sites by quadrupole timeofflight mass spectrometry. J Am Soc Mass Spectrom, 2008, 19 (9):13531360. 
[46] RomeroPuertas M C, Campostrini N, Matte A, et al. Proteomic analysis of Snitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics, 2008, 8 (7):14591469.

[1] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[4] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[5] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[6] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[7] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[8] GE Qi,ZHANG Peng,HAN Ming-zhe,YANG Jin-sheng,ZHANG Da-lu,CHEN Wei-gang. Signal Processing for Nanopore Sequencing and Its Application in DNA Data Storage[J]. China Biotechnology, 2021, 41(8): 75-89.
[9] LI Zhi-gang,GU Yang,TAN Hai,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Fermentation Production by Aminophylline and Citrate Coupling Addition[J]. China Biotechnology, 2021, 41(7): 50-57.
[10] KANG Ke-ren,YUAN Qiang,LIANG Fei-min,WU Li-xian. Synthesis of Benzfetamine Artificial Antigen[J]. China Biotechnology, 2021, 41(7): 58-65.
[11] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[12] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[13] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[14] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[15] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.