Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2008, Vol. 28 Issue (9): 68-76    DOI:
    
Construction of rabbit Hypoxanthine guanine phosphoribosyl transferase gene-targeting vector by Red homologous recombination System
Download: HTML   PDF(1072KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

It has been reported that a gene can be knocked out by homologous recombination technology in EL350 genetically engineered bacteria strain. However, the study about the mutation and genetic targeting of Hypoxanthine Guanine Phosphoribosyl Transferase (HPRT) gene by this system has not been reported. In this paper, rabbit full length HPRT gene BAC clone LBNL1-304M19 is used as the template. A 47kb rabbit HPRT gene fragment, which does not have promoter and exon1, is cloned into pBACLinkSp plasmid to form pBACLinkSp-rHPRT recombinant plasmid via Gap-Repair by Red recombination system. Then, different homologous arms are designed to delete different coding region of HPRT gene on the basis of the pBACLinkSp-rHPRT plasmid. Three different HPRT gene targeting vectors have been constructed. Meanwhile, the efficiency of deleting different sizes of DNA fragment by homologous recombination technology has also been studied. These three different HPRT gene targeting vectors form the basis for exploring the gene targeting in rabbit fibroblast cells and embryonic stem cells, and making rabbit HPRT gene knockout models in the future.



Key wordsRed recombination      HPRT gene      knockout      vector     
Received: 26 March 2008      Published: 25 September 2008
Cite this article:

. Construction of rabbit Hypoxanthine guanine phosphoribosyl transferase gene-targeting vector by Red homologous recombination System. China Biotechnology, 2008, 28(9): 68-76.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2008/V28/I9/68

[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[3] WANG Cong,LI Xiu,NIU Miao,DAI Yang-guang,DONG Zhe-yue,DONG Xiao-yan,YU Shuang-qing,YANG Yi-shu. Research on AAV9 Infectious Titer Detection Method Based on TCID50[J]. China Biotechnology, 2021, 41(10): 28-32.
[4] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[5] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[6] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[7] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[8] YU Chun-yang,ZHANG Chun,GUO Le,WAN Pan-pan,HUANG Yue,WANG Feng,LIU Kun-mei. Construction of Hippocampal Cortical Specific Knockout AEG-1 Gene Mice and Preliminary Study on Its Behavior[J]. China Biotechnology, 2020, 40(11): 10-20.
[9] Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG. Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model[J]. China Biotechnology, 2019, 39(5): 80-87.
[10] Zhan-bing MA,Jie DANG,Ji-hui YANG,Zheng-hao HUO,Guang-xian XU. Establishment and Application of Dual Fluorescent Labeling Multi-functional Autophagy Flux Monitoring System Based on Lentiviral System[J]. China Biotechnology, 2019, 39(5): 88-95.
[11] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[12] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[13] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[14] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[15] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.