Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2007, Vol. 27 Issue (3): 47-53    DOI:
    
Comparison of stable expressions of foreign genes driven by different promoters in transgenic Dunaliella salina
Download: HTML   PDF(542KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Abstract:The purpose of this study was to compare the difference between transgene expressions driven by homologous duplicated carbonic anhydrase(DCA)promoter and foreign CaMV35S promoter in the unicellular green alga, Dunaliella Salina. We introduced the CaMV35S promoter-bar construct and DCA promoter-bar construct into D.Salina by a Backon 2000 electroporation system. After the repeated selection with the PPT of 3mg/L, 3 PPT-resistant phenotype transformants were isolated from the CaMV-bar and DCA-bar pools of transformants of D. Salina, respectively. The results of PCR and sequencing showed that bar genes were stablely integrated into the genome of D.Salina, and Sorthern bolt showed the number of transgene copy had no significant difference between both promoters. Semi-quantitive RT-PCR indicated that the mRNA levels of bar gene were higher in DCA-bar transformants than the CaMV-bar transformants, and can be increased with the induction of high salt in DCA-bar transformants while the CaMV-bar transformants showed no change with the salt induction. The analysis of growth rate of transformants showed DCA-bar transformants achieved the log stage faster than the CaMV-bar transformants. It is concluded that the homologous promoters have more advantages than the foreign promoter in the transgenic D.Salina.



Key wordsPromoter      Stable expression      transgenic Dunaliella salina     
Received: 18 October 2006      Published: 25 March 2007
Cite this article:

. Comparison of stable expressions of foreign genes driven by different promoters in transgenic Dunaliella salina. China Biotechnology, 2007, 27(3): 47-53.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2007/V27/I3/47

[1] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[2] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[3] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[4] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[5] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[6] HUANG Yu,HUANG Shu-ting,ZHANG Xi-mei,LIU Yan. Cloning and Functional Analysis of the Promoter of HSP70 Gene in Gobiocypris rarus[J]. China Biotechnology, 2019, 39(10): 9-16.
[7] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[8] Jia-zhen WANG,Lun-guang YAO,Feng WANG,Yun-chao KAN,Jin-ping LUO,Qian-qian HUANG,Jian-ping DUAN. Cloning and Activity Analysis of a Midgut-specific Promoter in Silkworm (Bombyx mori)[J]. China Biotechnology, 2018, 38(2): 13-17.
[9] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[10] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[11] Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis[J]. China Biotechnology, 2018, 38(10): 8-19.
[12] NIE Yong-qiang, MA Hai-yan, MA Qing-wen. An in vivo Robust System for Generation of Site-specific Integration Minicircle DNA Vector[J]. China Biotechnology, 2017, 37(7): 80-87.
[13] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[14] NI Xuan, GAO Jin-xin, YU Chuan-jin, LIU Tong, LI Ya-qian, CHEN Jie. Bioinformatic Analysis and Promoter Identification of clt-1 Gene in Curvularia Lunata[J]. China Biotechnology, 2017, 37(3): 37-42.
[15] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.