Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2008, Vol. 28 Issue (6): 108-112    DOI:
    
Research Progress on Rcombinant Hepatitis B e Antigen
周倩 ZHOU Qian
Download: HTML   PDF(478KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

HBeAg is an ungranular secretory protein, which encoded by C gene of HBV DNA and it increases with the replication of HBV. So it is one of the markers of active replication of HBV in clinical diagnosis. HBeAg is important biologic raw materials which is widely used in preparation of related diagnostic articles with HBV infection serological detection. The technology of expression and purification of recombinant HBeAg is quite mature, which had successfully expressed the target protein in various expression systems. The key factors on HBeAg expression include important site mutation in precore region ,the choice of vectors, effects of RNA interference(RNAi)and so on. Therefore, in order to meet requirements of related diagnostic products, it need to improve expression level and purity of recombinant HBeAg and avoid cross-reaction with HBcAg. In a word, it showed that acquisition of high quality recombinant HBeAg could lay substantial foundation for improving diagnostic products, provide a reliable evidence for exploiting new type of theapical and preventive HBV vaccine and offer possibility of HBeAb detection methodological optimization.



Key wordsHBeAg      expression      mutation      diagnosis     
Received: 23 January 2008      Published: 25 June 2008
Corresponding Authors: 周倩 ZHOU Qian   
Cite this article:

周倩 ZHOU Qian . Research Progress on Rcombinant Hepatitis B e Antigen. China Biotechnology, 2008, 28(6): 108-112.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2008/V28/I6/108

[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[3] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[4] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[5] SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip[J]. China Biotechnology, 2021, 41(2/3): 116-128.
[6] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[7] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[8] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[9] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[10] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[11] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[12] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[13] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[14] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[15] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.