Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2008, Vol. 28 Issue (3): 74-78    DOI:
    
Studies on the extraction and toxicity of exopolysaccharide from Rhizobium sp. N613
Download: HTML   PDF(551KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The process of extracting exopolysaccharide(REPS) from Rhizobium sp. N613 was optimized in this study. The optimized conditions of extracting REPS were obtained by Response Surface Methodology. They are pH value 5.9, concentration of ethanol 74% and precipitation time 16.5 h, respectively. Under those conditions, the extraction yield was 9.28±0.06 g · L -1, the purity was up to 97% and the extraction rate was 93.6%. At the same time, the thesis carried out the test of the viscosity、 acute toxicity and accumulative toxicity of REPS. It is showed that REPS has high viscosity and nontoxicity. So it is more valuable for the application for food and medicine.



Key wordsexopolysaccharide      Response Surface Methodology      extraction      acute toxicity      accumulative toxicity     
Received: 28 November 2007      Published: 28 March 2008
Cite this article:

. Studies on the extraction and toxicity of exopolysaccharide from Rhizobium sp. N613. China Biotechnology, 2008, 28(3): 74-78.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2008/V28/I3/74

[1] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[2] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[3] AN Yun-he, CHENG Xiao-yan, TIAN Yan-jie, MA Kai, GAO Li-juan, WU Hui-juan. Influence of DNA Extraction Method on Microbial Diversity Analysis Through Next Generation Sequencing[J]. China Biotechnology, 2017, 37(11): 12-18.
[4] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, MO Ting, LIU Jin-yi, YAO Wen-bing. Expression of Soluble Anti-TNF-α Fab in E.coli: Optimization for Technological Process[J]. China Biotechnology, 2016, 36(9): 31-37.
[5] TONG Liang-qin, QU Ya-jun, CHEN Min. Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria[J]. China Biotechnology, 2015, 35(11): 85-91.
[6] HU Zong-fu, ZHU Hong-ji. Application of Phosphate Solubilizing Yeast Pichia farinose FL7 in Phytoextraction of Nickel Contaminated Soil[J]. China Biotechnology, 2015, 35(11): 36-45.
[7] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[8] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[9] LIU Li, ZHANG Yong-jun, XU Chang-zheng, LUO Feng. A Modified CTAB Method for Isolating Genome DNA from Fungus with Abundant Polysaccharose[J]. China Biotechnology, 2014, 34(5): 75-79.
[10] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[11] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[12] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[13] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[14] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[15] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.