Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (12): 108-113    DOI:
    
Advances of Study on Arbuscular Mycorrhizal Symbiotic Phosphate Transporter in Plants
ZHU Xian-can1,2,SONG Feng-bin1
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
2.Graduate School of The Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(459KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 The arbuscular mycorrhizal(AM)symbiosis is a mutualistic endosymbiosis formed by plant roots and AM fungi. The AM symbiosis is manifested in bidirectional nutrient exchange: AM fungi obtain carbon from their plant host while assisting the plant with the acquisition of mineral nutritions(in particular phosphate)from the soil. AM symbiosis facilitate phosphate uptake is the central reason of plant growth and development. Phosphate transport into the root is mediated by phosphate transporters, and phosphate transporters play a role in the acquisition of phosphate released by the fungus in the AM symbiosis.The molecular biology of arbuscular mycorrhizal symbiotic phosphate transporters in plants was summarized. AM phosphate transporter belong to Pht1 family, is not only essential for the acquisition of phosphate, also critical to AM symbiosis. Study of phosphate transport roles and their gene regulation will further our knowledge of the interaction between the two symbiotic partners, and so as to provide innovative approach to improving phosphate efficiency and agricultural yield.



Key wordsArbuscular mycorrhiza      Gene regulation      Phosphate transporter      Symbiosis     
Received: 01 June 2009      Published: 21 December 2009
ZTFLH:  Q945  
Cite this article:

SHU Xian-Can, SONG Feng-Bin. Advances of Study on Arbuscular Mycorrhizal Symbiotic Phosphate Transporter in Plants. China Biotechnology, 2009, 29(12): 108-113.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I12/108

[1]   Heckman D S, Geiser D M, Eiddel B R, et al. Molecular evidence for the early colonization of land by fungi and plants. Science, 2001, 293: 1129~1133
[2]   Schüssler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res, 2001, 105: 1413~1421
[3]   Smith S E, Read D J. Mycorrhizal Symbiosis San Diego:Academic Press,1997
[4]   Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol, 2000, 124: 949~958
[5]   Martin P. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol, 2008, 6: 763~775
[6]   Bieleski R L, Ferguson I B. Physiology and metabolism of phosphate and its compounds. In Encyclopedia of Plant Physiology, Luchli A,Bieleski RL eds.New York: Springer- Verlag, 1983.422~449
[7]   Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell. Plant Physiol, 1998, 116: 447~453
[8]   Rausch C, Daram P, Brunner S, et al. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 2001, 414: 462~470
[9]   Paszkowski U, Kroken S, Roux C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activates in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci, USA, 2002, 99: 13324~13329
[10]   Nagy R, Karandashov V, Chague V, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J, 2005, 42: 236~250
[11]   Harrison M J, Dewbre G R, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 2002, 14: 24~29
[12]   Glasso PD, Smith S E, Smith F W. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta, 2005, 222: 688~698
[13]   Maeda D, Ashida K, Iguchi K, et al. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol, 2006, 47: 807~817
[14]   Chen A Q, Hu J, Sun S B, et al. Conservation and divergence of both phosphate- and mycorrhiza- regulated physiological responses and expression patterns of phosphate transporters in Solanaceous species. New Phytol, 2007, 173: 817~831
[15]   戚继艳, 阳江华, 唐朝荣. 植物蔗糖转运蛋白的基因与功能. 植物学通报, 2007, 24: 532~543 Qi J Y, Yang J H, Tang C R.Chin Bull Bot, 2007, 24: 532~543
[16]   Pao S S, Paulsen I T, Saier M H. Major facilitator superfamily. Microbiol Mol Biol, 1998, 62: 1~34
[17]   Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 2005, 10: 22~29
[18]   Harrison M J, van Buuren M J. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 1995, 378: 626~629
[19]   Maldonado-Mendoza I E, Dewbre G R, Harrison M J. A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact, 2001, 14: 1140~1148
[20]   Benedetto A, Magurno F, Bonfante P, et al. Expression profiles of a phosphate transporter gene(GmosPT)from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza, 2005, 15: 620~627
[21]   杨存义, 刘灵, 沈宏, 等. 植物Pht1家族磷转运子的分子生物学研究进展. 分子植物育种, 2006, 4: 153~159 Yang C Y, Liu L, Shen H, et al.Mol Plant Breed, 2006, 4: 153~159
[22]   Xu G, Chague V, Melamed-Bessudo C, et al. Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Ex PBot, 2007, 58: 2491~2501
[23]   Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol, 2003, 133: 16~20
[24]   Roose T, Fowler A C. A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol, 2004, 228: 173~184
[25]   Smith S E, Gianinazzi-Pearson V. Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol, 1990, 17: 177~188
[26]   Ezawa T, Smith S E, Smith F A. Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol, 2001, 149: 555~563
[27]   Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23~37
[28]   Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol, 2007, 173: 11~26
[29]   Javot H, Pumplin N, Harrison M J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ, 2007, 30: 310~322
[30]   Grunwald U, Guo W B, Fischer K,et al. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta, 2009, 229: 1023-1034
[31]   Smith S E, Smith F A, Jakobsen I. Functional diversity in arbuscular mycorrhizal(AM)symbiosis: the contribution of the mycorrhizal Puptake pathway is not correlated with mycorrhizal responses in growth or total Puptake. New Phytol, 2004, 162: 511~524
[32]   王萍, 陈爱群, 余玲, 等. 植物磷转运蛋白基因及其表达调控的研究进展. 植物营养与肥料学报, 2006, 12, 584~591 Wang P, Chen A Q, Yu L, et al.Plant Nutr Fertil Sci, 2006, 12: 584~591
[33]   Javot H, Penmetsa R V, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci, USA, 2007, 104: 1720~1725
[34]   Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol, 2006, 172: 35~46
[35]   胡江, 孙淑斌, 徐国华. 植物中丛枝菌根形成的信号途径研究进展. 植物学通报, 2007, 24: 703~713 Hu J, Sun S B, Xu G H.Chin Bull Bot, 2007, 24: 703~713
[36]   Karandashov V, Nagy R, Wegmuller S, et al. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci, USA, 2004, 101: 6285~6290
[1] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[2] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[3] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.
[4] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA[J]. China Biotechnology, 2011, 31(12): 109-114.
[5] . Construction and expression in vitro of RU486-inducible regulatory vector[J]. China Biotechnology, 2007, 27(6): 1-5.