Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (03): 95-99    DOI:
    
Application of Pseudovirus Systems on Anti-HIV-1 Drugs Screening and Drug-resistance Analyzing of HIV-1-Variants
1.Institute of Bioresource R&D of Kunming University of Science and TechnologyTsinghua University, Kunming 650224,China
2.Yunnan University of Traditional Chinese Medicine, Kunming 650200,China
Download: HTML   PDF(417KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The emergence of drug-resistant variants during antiretroviral therapy is a serious obstacle to sustained suppression of the human immunodeficiency virus type 1 (HIV-1). For that reason, continued drug discovery and resistance assays are essential for the treatment of HIV-1 infection. Using pseudovirus systems is a more attractive option for the screening of anti-HIV-1 drugs and the analysing of drug resistance. The construction and characterization of the pseudotyped HIV with a single-round infectivity and some novel cell-based pharmacological models for anti-HIV-1 compounds screening and drug-resistance analyzing by using pseudovirus systems were introduced. Meanwhile, a large number of studies have been summarized to prove that using these systems is accurate, safe and efficient.



Key wordsHIV      Pseudovirus      Drug screening      Drug resistance analysis     
Received: 16 November 2009      Published: 25 March 2010
Cite this article:

XIE Gui-Huang, DIAO Qing-Lan, CHEN Chao-Yin. Application of Pseudovirus Systems on Anti-HIV-1 Drugs Screening and Drug-resistance Analyzing of HIV-1-Variants. China Biotechnology, 2010, 30(03): 95-99.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I03/95

[1] Briggs J A, Wilk T, Fuller S D. Do lipid rafts mediate virus assembly and pseudotyping. J Gen Virol, 2003, 84(pt4): 757768. 
[2] Sanders D A. No false start for novel pseudotyped vectors. Curr Opin Biotechnol, 2002, 13(5): 437442. 
[3] Cohen J. Did Merck’s failed HIV vaccine cause harm? . Science, 2007, 318(5853): 10481049. 
[4] Cohen J. Promising AIDS vaccine’s failure leaves field reeling. Science, 2007, 318(5847): 2829. 
[5] Heyndrickx L, Vermoesen T, Vereecken K, et al. Antiviral compounds show enhanced activity in HIV1 single cycle pseudovirus assays as compared to classical PBMC assays. J Virol Methods, 2008, 148(12): 166173. 
[6] 种辉辉, 许四宏, 王佑春. 评价HIV1抗病毒药物的重组假病毒法的建立及其初步应用. 药物分析杂志, 2008, 28(6):924927. Zhong H H, Xu S H, Wang Y C.Chin J Pharm Anal, 2008, 28(6): 924927. 
[7] Adelson M E, Pacchia A L, Kaul M, et al. Toward the development of a viruscellbased assay for the discovery of novel compounds against human immunodeficiency virus type 1 . Antimicrob Agents Chemother, 2003, 47(2): 501508. 
[8] Garcia J M, Gao A, He P L, et al. Highthroughput screening using pseudotyped lentiviral particles: A strategy for the identification of HIV1 inhibitors in a cellbased assay. Antiviral Res, 2009, 81(3): 239247. 
[9] Wei X, Decker J M, Liu H, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T20) monotherapy. Antimicrob Agents Chemother, 2002. 46(6): 18961905. 
[10] Wei X, Decker J M, Wang S, et al. Antibody neutralization and escape by HIV1. Nature, 2003, 422(6929): 307312. 
[11] He J, Choe S, Walker R, et a1. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol, 1995, 69(11): 67056711. 
[12] 仇超, 彭虹,黄相刚等. 携带绿色荧光蛋白基因的单轮感染活性HIV假病毒的建立及其活性检测. 中华微生物学和免疫学杂志. 2006, 26(5): 394398. Qiu C, Peng H, Huang X G, et al.Chin J Microbiol Immunol, 2006, 26(5): 394398. 
[13] 曹颖莉, 郭颖. 应用假病毒技术研究HIV1复制抑制剂. 药学学报, 2008, 43(3): 253258. Cao Y L, Guo Y.Acta Pharm Aceutica Sinica, 2008, 43(3): 253258. 
[14] Mastromarino P, Conti C, Goldoni P, et al. Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J. Gen. Virol, 1987, 68(pt9): 23592369. 
[15] Petropoulos C J, Parkin N T, Limoli K L, et a1. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother, 2000, 44(4): 920928. 
[16] Chan E, HeilekSnyder G, Cammack N, et al. Development of a Moloney murine leukemia virusbased pseudotype antiHIV assay suitable for accurate and rapid evaluation of HIV entry inhibitors. J Biomol Screen, 2006, 11(6): 652663. 
[17] Lee M K, Seo J K, Kim H K, et a1.A vector system for introducing foreign HIV1 env genes and pseudotyping of MuLV particles with the recombinant HIV1 envelope proteins for antiHIV1 assay. Antiviral Res, 2002, 53(2):99111. 
[18] Takeuchi Y, Simpson G, Vile R G,et al. Retroviral pseudotypes produced by rescue of a Moloney murine leukemia virus vector by Ctype, but not Dtype, retroviruses. Virology, 1992 , 186(2):792794. 
[19] 苗文泉,李敬云.抗HIV药物的筛选评价方法. 国外医学药学分册, 2007, 34(3):170173. Miao W Q, Li J Y.Foreign Medical Sciences Section of Pharmacy, 2007, 34(3): 170173. 
[20] Kageyama S, Kurokawa M, Shiraki K. Extract of prunella vulgaris spikes inhibits HIV replication at reverse transcription in vitro and can be absorbed from intestine in vivo. Antivir Chem Chemother,2000,11(2): 157164. 
[21] Westby M, Nakayama G R, Butler S L, et al. Cellbased and biochemical screening approaches for the discovery of novel HIV1 inhibitors. Antiviral Res, 2005, 67(3): 121140. 
[22] GarciaPerez J, SanchezPalomino S, PerezOlmeda M, et al. A new strategy based on recombinant viroses as a tool for assessing drug susceptibility of human immunodeficiency virus type 1.J Med Virol, 2007,79(2):127137. 
[23] Stuyver L,Wyseur A, Rombout A, et a1. Line probe assay for rapid detection of drugselected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene. Antimicrob Agents Chemother, 1997, 41(2): 284291. 
[24] Erali M, Page S, Reimer LG, et a1. Human immunodeficiency virus type 1 drug resistance testing: A comparison of three sequencebased methods. J Clin Microbiol, 2001, 39(6): 21572165. 
[25] Iga M, Matsuda Z, Okayama A, et a1. Rapid phenotypic assay for human immunodeficiency virus type 1 protease using in vitro translation. J Virol Methods, 2002, 106(1): 2537. 
[26] Race E, Dam E, Obry V, et a1. Analysis of HIV crossresistance to protease inhibitors using a rapid singlecycle recombinant virus assay for patients failing on combination therapies. AIDS, 1999, 13(15): 20612068. 
[27] PerezElias M J, GarciaArota I, Munoz V, et al. Phenotype or virtual phenotype for choosing antiretroviral therapy after failure: A prospective, randomized study. Antivir Ther, 2003, 8(6): 577584. 
[28] Japour A J, Mayers D L, Johnson V A, et a1. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother, 1993, 37(5):10951101. 
[29] Paolucci S, Baldanti1 F, Zavattoni M, et al. Novel recombinant phenotypic assay for clonal analysis of reverse transcriptase mutations conferring drug resistance to HIV1 variants. J Antimicrob Chemother, 2004, 53(5): 766771.

[1] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[2] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[3] YUAN Ya-hong, ZHAO Shan-shan, WANG Xiao-li, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. HIV-1 Tat Protein Inhibits the Hematopoiesis Support Function of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(6): 1-8.
[4] WANG Xiao-li, YU Qing, YUAN Ya-hong, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. Targeting TRIM5α Gene of CD4+ T cells of Macaca mulatta Affect Their Ability on HIV Infection[J]. China Biotechnology, 2017, 37(2): 15-19.
[5] ZHU Yun-peng, WANG Peng, XIA Bo-ran, TANG Yan-ting, WANG Quan. Screening and Inhibition Kinetics of SARS Coronavirus Main Protease Inhibitors[J]. China Biotechnology, 2016, 36(4): 35-42.
[6] ZHU Yi-long, LI Chang, GUO Yan, LIU Cun-xia, DU Shou-wen, WANG Mao-peng, JIN Ning-yi. Construction and Selection of the Recombinant Fowlpox Expressing HIV-1 gag[J]. China Biotechnology, 2014, 34(1): 57-63.
[7] NIE Lun, WU Wen-yan. RANTES Derivates and HIV-1 Entry Inhibitor[J]. China Biotechnology, 2013, 33(2): 96-102.
[8] LIU Bin, LIU Xin, LI Shan, HE Hong-qiu, ZHANG Xiao-yi, TAN Jian-jun, CHEN Wei-zu, WANG Cun-xin. A Fluorescent Screening Assay for HIV-1 Integrase Inhibitors Targeting Strand Transfer[J]. China Biotechnology, 2013, 33(1): 67-71.
[9] CHEN Feng, YANG Yi-shu, ZENG Yi. Current Development on RNA-based Anti-HIV-1 Gene Therapy[J]. China Biotechnology, 2012, 32(6): 93-97.
[10] LI Jian-bin, MI Zhi-qiang, AN Xiao-ping, TAN Li, CHEN Bin, WANG Xiao-na, FAN Hua-hao, ZHANG Wen-hui, ZHANG Bo, FANG Xiang, TONG Yi-gang. Random shRNA Library Screen for shRNAs Targeting HIV-1 LTR Related Host Factors with TK Suicide Gene[J]. China Biotechnology, 2012, 32(09): 48-54.
[11] HE Hong-qiu, JIA Yu-yue. Soluble Expression and Inhibitor Screening of the Central Core Domain of HIV-1 Integrase[J]. China Biotechnology, 2012, 32(03): 14-19.
[12] HE Hong-qiu, LIU Bin, CHEN Wei-zu, WANG Cun-xin. Kinetic Study of The HIV-1 Integrase 3'-processing Reaction Using a Molecular Beacons Based Assay[J]. China Biotechnology, 2012, 32(02): 76-81.
[13] WANG Zi-ye, FENG Juan, MA Xue-mei, WANG Ming-lian, ZHONG Ru-gang. Screening of HIV-1 p24 Binding Peptides from Phage Display Peptide Library[J]. China Biotechnology, 2011, 31(5): 104-107.
[14] ZHANG Hao-yuan, WU Wen-yan. Research on HIV Entry Inhibitors[J]. China Biotechnology, 2011, 31(5): 113-120.
[15] SHI Wen-fang, FENG Yue, WEI Da-qiao, XIA Xue-shan. Hepatitis C Virus Targeting Drug and Drug Screening System[J]. China Biotechnology, 2011, 31(11): 95-101.