Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (11): 12-16    DOI:
    
The Influence of α-synuclein Overexpression on Mitochondrial Membrane Structure with Atomic Force Microscopy
ZHAO Chun-li,ZHU Yuan-gang,DUAN Chun-li,LU Ling-ling,ZHANG Ling,YANG Hui
Beijing Institute for Neuroscience, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing 100069,China
Download: HTML   PDF(1050KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To identify the effect of α-synuclein overexpression on mitochondrial membrane structure with atomic force microscopy. Methods α-syn expression was mediated by AAV (adeno-associated viral vector) and Recombinant AAV/α-syn and AAV/LacZ viral particles were stereotaxically injected in the left side of rat substantia nigra (SN) for rat model of α-synuclein overexpression. Mitochondria were isolated from rats SN of Brain. Mitochondria were analysis with JC1 staining, atomic force microscopy and Western Blot. Results By 16 weeks post-infection of AAV-α-syn,the level of α-syn increased about 2 times in mitochondrial fraction with Western Blot and mitochondrial membrane potential (ΔΨ) decreased with JC1 staining. Furthermore, mitochondria swelling and porous like structure formed on the mitochondrial membrane with atomic force microscopy. Conclusion The data suggested that α-syn could accumulate in mitochondria, might form mitochondrial membrane pores and lead to ΔΨ decreases. α-syn might lead to mitochondrial dysfunction in Parkinson’s disease.



Key wordsParkinson’s disease      α-Synuclein      Atomic force microscopy      Mitochondria     
Received: 12 January 2009      Published: 07 December 2009
ZTFLH:  R741  
Cite this article:

DIAO Chun-Li, CHU Yuan-Gang, DUAN Chun-Li, LU Ling-Ling, ZHANG Ling, YANG Hui. The Influence of α-synuclein Overexpression on Mitochondrial Membrane Structure with Atomic Force Microscopy. China Biotechnology, 2009, 29(11): 12-16.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I11/12

[1]   Hunter R L, Dragicevic N, Seifert K, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem, 2007, 100(5): 1375~1386
[2]   Liu D, Jin L, Wang H, et al. Silencing asynuclein gene expression enhances tyrosine hydroxylase activity in MN9D cells. Neurochem Res,2008, 33(7): 1401~1409
[3]   Sawada H, Kohno R, Kihara T, et al. Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alphasynuclein inclusions. J Biol Chem, 2004, 279(11): 10710~10719
[4]   Quist A, Doudevski I, Lin H, et al. Amyloid ion channels: a common structural link for proteinmisfolding disease. Proc Natl Acad Sci USA, 2005, 102(30): 10427~10432
[5]   鲁玲玲,周爱霞,杨慧. AAV介导的α-synuclein基因过表达致多巴胺能神经元损伤——一种制作轻度帕金森病大鼠模型的新方法.中国生物工程杂志, 2009, 29(1): 1~6 Lu L L, Zhou A X, Yang H. China Biotechnology, 2009, 29(1): 1~6
[6]   Anderson M F, Sims N R. Improved recovery of highly enriched mitochondrial fractions from small brain tissue samples. Brain Res Protoc, 2000, 5(1): 95~101
[7]   Robin M A, Anandatheerthavarada H K, Biswas G, et al. Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an Nterminal chimeric signal by cAMPmediated phosphorylation. J Biol Chem, 2002, 277(43): 40583~40593
[8]   Beal M F. Commentary on “Alphasynuclein and mitochondria: a tangled skein”. Exp Neurol, 2004, 186(2): 109~111
[9]   Zhang L, Zhang C, Zhu Y, et al. Semiquantitive analysis of αsynuclein in subcellular compartments of rat brain neurons: an immunogold electron microscopic study using a novel monoclonal antibody. Brain Research, 2008, 1244: 40~52
[10]   Devi L, Raghavendran V, Prabhu B M, et al. Mitochondrial import and accumulation of alpha synuclein impairs complex I in human dopaminergic neuronal cultures and Parkinson's disease brain. J Biol Chem, 2008, 283(14): 9089~9100
[11]   Kroemer G, Reed J C. Mitochondrial control of cell death. Nat Med, 2000, 6(5): 513~519
[12]   Layton B E, Sastry A M, Lastoskie C M, et al. In situ imaging of mitochondrial outermembrane pores using atomic force microscopy. Biotechniques, 2004, 37(4): 564~570
[13]   Mijaljica D, Prescott M, Devenish R J. Different fates of mitochondria: alternative ways for degradation? Autophagy, 2007, 3(1): 4~9
[1] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[2] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[3] Chen-yang ZHANG,Chang-chun HEI,Shi-lin YUAN,Yu-jia ZHOU,Mei-ling CAO,Yi-xin QIN,Xiao YANG. SIRT3 Inhibits Mitophagy and Alleviates Neuronal Oxygen Deprivation/Reoxygenation Injury Aggravated by High Glucose[J]. China Biotechnology, 2021, 41(11): 1-13.
[4] Feng LI,Xiao-dong GAO,Hideki NAKANISHI. Analysis of Martrix Targeting Sequence of Human Mitochondrial OGT in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(4): 32-37.
[5] Yan-yan LIU,Hui-rong LI,Yue HU,Yang-yang FAN,Xiang-ming LI,Qing-qing TAN,Jia-qiang WU,Xun BU. Multiplex Fluorescent Real-time PCR Detection of Fox, Mink, Raccoon and Dog Derived Materials in Feedstuff[J]. China Biotechnology, 2017, 37(12): 67-76.
[6] ZHOU Ting-ting, PAN Chuan-yong, ZHANG Jian-peng, JIN Hui-ying. The Research of the Glycosylation of Sodium Channel β4 Subunit[J]. China Biotechnology, 2014, 34(7): 10-16.
[7] QIN Yao, ZHAO Hong-yan, ZHANG Wen-hang, WANG Dong-mei. Generation of Mitochondrial Transcription Factor a Knockdown Transgenic Mice[J]. China Biotechnology, 2014, 34(7): 44-48.
[8] LI Chen, GU Hua, GUO Jia, SUN Hui, HUANG Jing-wei, JIANG Ming, JIN Ling-jing, FANG Jian-min. Expression of Tat-MANF Fusion Protein and Its Bioactivity Analysis[J]. China Biotechnology, 2014, 34(06): 7-15.
[9] ZHU Xiao-san, DAI Yi-chen, CHEN Zhang-xing, XIE Jun-pei, ZENG Wei, LIN Yuan-yuan, ZHAO Ben-hua. ECHS1 Involved in Antagonising Apoptosis in HepG2 Cells via the Mitochondrial Pathway[J]. China Biotechnology, 2013, 33(8): 11-16.
[10] LIU Shu, JIANG Chang-an. Serine Protease Omi/HtrA2 Regulates Adaptor Protein p66Shc in Mitochondria[J]. China Biotechnology, 2012, 32(09): 9-14.
[11] MA Hong-mei, ZHANG Gui-feng, LI Chun, KONG Ying-jun, GAO Fei, HU Tao, MA Guang-hui, SU Zhi-guo. Effect of Interfacial Ligands on the Absorption Behavior of BSA[J]. China Biotechnology, 2012, 32(07): 53-59.
[12] FU Yue-jiao, DUAN Chun-li, GONG Pu-sheng, JIA Huan-zhen, ZHANG ian-liang, ZHAO Chun-li, LU Ling-ling, ZHAO Huan-ying, YUAN Xing-xing, YANG Hui. Identification Domains of PINK1 Interacting with α-Synuclein[J]. China Biotechnology, 2011, 31(12): 10-14.
[13] WANG Wen-Ju, SUN Mao-Cheng, YAN Min, LI Hong-Jun. The Construction of Recombinant Adenovirus Delivering Chimeric Neurturin and Activity Assay in vitro[J]. China Biotechnology, 2010, 30(09): 7-12.
[14] SU Yu-Jin, CAO Qian, LU Ling-Ling, SUN Xiao-Gong, GAO Hua, DIAO Sha-Sha, YANG Hui. Nrf3 Pathway was Involved in the Protection of Astrocyte Against the Neurotoxicity of Rotenone[J]. China Biotechnology, 2010, 30(01): 19-24.
[15] LV Wang-Le, ZHANG Tao, LIU Qi, FAN Chun-Xiang, ZHANG Ling, DIAO Huan-Yang, DIAO Chun-Li, YANG Hui. N-terminal of α-Synuclein Involved in Regulation of Mitochondrial Function[J]. China Biotechnology, 2009, 29(12): 1-6.