Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (05): 140-148    DOI:
    
Progress in Glycerol Metabolism and its Physiological Function in Yeast Cells
CHEN Xian-zhong1,2,WANG Zheng-xiang1,2,ZHU Ge-jian1
1.Key Lab of Industrial Biotechnology, The Education Ministry, Jiangnan University, Wuxi 214122, China
2.Center for Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(1079KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Glycerol, a common polyol metabolite, is produced during yeast cells growth, propagation and glucose metabolism. Though glycerol structure and metabolic pathway is very simple, it plays an important physiological role in yeast cells, especially which are exposed in such stress conditions as hypertonic medium, frozen temperature and anaerobic environment. Glycerol metabolism is involved in osmoregulation and redox balance regulation. Recently, physiological function of glycerol in yeast, especially for Saccharomyces cerevisiae, were focused on and investigated widely. Glycerol metabolism was introduced succinctly, and the correlations of glycerol production and osmoregulation, redox balance are emphasized on. Moreover, metabolic engineering for glycerol biosynthesis and its future research prospects are discussed.



Key wordsSaccharomyces cerevisiae      Glycerol metabolism      High osmotic glycerol pathway      Redox balance     
Received: 16 December 2009      Published: 25 May 2010
Corresponding Authors: Chen XianZhong     E-mail: zxwang@jiangnan.edu.cn
Cite this article:

CHEN Xian-Zhong, WANG Zheng-Xiang, CHU Ge-Jian. Progress in Glycerol Metabolism and its Physiological Function in Yeast Cells. China Biotechnology, 2010, 30(05): 140-148.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I05/140

[1 ]Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 2002, 66(2): 300372. 
[2] Maeda T, WurglerMurphy S M, Saito H. A twocomponent system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 369(6477): 242245. 
[3] Wang Z X, Zhuge J, Fang H, et al. Glycerol production by microbial fermentation: a review. Biotechnol Adv, 2001, 19(3): 201223. 
[4] Pahlman A K, Granath K, Ansell R, et al. The yeast glycerol 3phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem, 2001, 276(5): 35553563. 
[5] Cronwright G R, Rohwer J M, Prior B A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol, 2002, 68(9): 44484456. 
[6] Larsson C, Pahlman I L, Ansell R, et al. The importance of the glycerol 3phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast, 1998, 14(4): 347357. 
[7] Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem, 1997, 272(9): 55445554. 
[8] Ronnow B, KiellandBrandt M C. GUT2, a gene for mitochondrial glycerol 3phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast, 1993, 9(10): 11211130. 
[9] Forster J, Famili I, Fu P, et al. Genomescale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 2003, 13(2): 244253. 
[10] Nielsen J. It is all about metabolic fluxes. J Bacteriol, 2003, 185(24): 70317035. 
[11] Luttik M A, Overkamp K M, Kotter P, et al. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem, 1998, 273(38): 2452924534. 
[12] Eriksson P, Andre L, Ansell R, et al. Cloning and characterization of GPD2, a second gene encoding snglycerol 3phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol, 1995, 17(1): 95107. 
[13] Nissen T L, Hamann C W, KiellandBrandt M C, et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast, 2000, 16(5): 463474. 
[14] Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+dependent glycerol 3phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. Embo J, 1997, 16(9): 21792187. 
[15] Bjorkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol3phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol, 1997, 63(1): 128132. 
[16] 王正祥, 诸葛健. 酵母细胞渗透压调节与甘油代谢. 生物工程进展, 1999, 19(05): 3439. Wang Z X, Zhuge J. Progress in Biotechnology, 1999, 19(05): 3439. 
[17] Albertyn J, Hohmann S, Thevelein J M, et al. GPD1, which encodes glycerol3phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the highosmolarity glycerol response pathway. Mol Cell Biol, 1994, 14(6): 41354144. 
[18] Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell, 1995, 80(2): 187197. 
[19] Chen R E, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1773(8): 13111340. 
[20] Raman M, Chen W, Cobb M H. Differential regulation and properties of MAPKs. Oncogene, 2007, 26(22): 31003112. 
[21] Gustin M C, Albertyn J, Alexander M, et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1998, 62(4): 12641300. 
[22] Warmka J, Hanneman J, Lee J, et al. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogenactivated protein kinase Hog1. Mol Cell Biol, 2001, 21(1): 5160. 
[23] Dihazi H, Kessler R, Eschrich K. High osmolarity glycerol (HOG) pathwayinduced phosphorylation and activation of 6phosphofructo2kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem, 2004, 279(23): 2396123968. 
[24] Kayingo G, Wong B. The MAP kinase Hog1p differentially regulates stressinduced production and accumulation of glycerol and Darabitol in Candida albicans. Microbiology, 2005, 151(Pt 9): 29872999. 
[25] Alexander M R, Tyers M, Perret M, et al. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol Biol Cell, 2001, 12(1): 5362. 
[26] Wojda I, AlonsoMonge R, Bebelman J P, et al. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology, 2003, 149(Pt 5): 11931204. 
[27] Panadero J, Pallotti C, RodriguezVargas S, et al. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem, 2006, 281(8): 46384645. 
[28] Munro C A, Selvaggini S, de Bruijn I, et al. The PKC, HOG and Ca2+ signalling pathways coordinately regulate chitin synthesis in Candida albicans. Mol Microbiol, 2007, 63(5): 13991413. 
[29] Thorsen M, Di Y, Tangemo C, et al. The MAPK Hog1p modulates Fps1pdependent arsenite uptake and tolerance in yeast. Mol Biol Cell, 2006, 17(10): 44004410. 
[30] Klipp E, Nordlander B, Kruger R, et al. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol, 2005, 23(8): 975982. 
[31] Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+dependent glycerol3phosphate dehydrogenase, explains their different contributions to redoxdriven glycerol production. J Biol Chem, 2004, 279(38): 3967739685. 
[32] Huh W K, Falvo J V, Gerke L C, et al. Global analysis of protein localization in budding yeast. Nature, 2003, 425(6959): 686691. 
[33] 陈献忠, 方慧英, 饶志明,等. 产甘油假丝酵母与酿酒酵母胞浆3磷酸甘油脱氢酶基因的功能比较. 生物化学与生物物理进展, 2009, 36(02): 198205. Chen X Z, Fang H Y, Rao Z M, et al. Progress in Biochemistry and Biophysics, 2009, 36(02): 198205. 
[34] Chen X, Fang H, Rao Z, et al. Cloning and characterization of a NAD+dependent glycerol3phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res, 2008, 8(5): 725734. 
[35] Nguyen H T, Dieterich A, Athenstaedt K, et al. Engineering of Saccharomyces cerevisiae for the production of Lglycerol 3phosphate. Metab Eng, 2004, 6(2): 155163. 
[36] Gori K, Mortensen H D, Arneborg N, et al. Expression of the GPD1 and GPP2 orthologues and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations. Yeast, 2005, 22(15): 12131222. 
[37] Remize F, Barnavon L, Dequin S. Glycerol export and glycerol3phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng, 2001, 3(4): 301312. 
[38] Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol, 2006, 72(7): 46884694. 
[39] Cordier H, Mendes F, Vasconcelos I, et al. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng, 2007, 9(4): 364378.

[1] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[4] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[5] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[6] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[7] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[8] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[9] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[10] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[11] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[12] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[13] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[14] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[15] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.