Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (04): 119-123    DOI:
    
Research Progress in Large-scale Production of Plasmid DNA for Gene Therapy
HU Chun-sheng1,2, ZHANG Qing-lin1, ZHANG Tong2
1. Beijing Institute of Radiation Medicine, Beijing 100850, China;
2. College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Download: HTML   PDF(1067KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plasmid DNA encoding treatment gene for pharmaceutical applications was approved into the clinical trials. A pre-requisite to the success of plasmid-based therapies is the development of effective production of plasmid DNA. However, at present, there are several problems and bottlenecks in large-scale production of pharmaceutical plasmid DNA. Such as vector construction, cell lysis, bacteria chromosome DNA removing, bacteria endotoxin removing and quality-control in production process. The downstream for the large-scale production of plasmid DNA, limitations and the strategies used to obtain a final product that meets specifications was reviewed.



Key wordsGene therapy      Plasmid DNA      Large-scale      Alkaline lysis      Purification     
Received: 13 October 2010      Published: 26 April 2011
ZTFLH:  Q819  
Cite this article:

HU Chun-sheng, ZHANG Qing-lin, ZHANG Tong. Research Progress in Large-scale Production of Plasmid DNA for Gene Therapy. China Biotechnology, 2011, 31(04): 119-123.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I04/119


[1] Hoare M, Levy M S, Bracewell D G, et al. Bioprocess engineering issues that would be faced in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. Biotechnol Prog, 2005, 21(6):1577-1592.

[2] Urthaler J, Buchinger W, Necina R. Improved downstream process for the production of plasmid DNA for gene therapy. Act Biochim Polonica, 2005, 52(3): 703 -711.

[3] Cai Y, Rodriguez S, Hebel H. DNA vaccine manufacture: scale and quality. Expert Rev Vaccines, 2009, 8(9): 1277-1291.

[4] Luo D, Saltzman W M. Synthetic DNA delivery systems. Nat Biotechnol, 2000, 18: 33-37.

[5] 朱玉贤, 李毅. 现代分子生物学. 第2版.北京: 高等教育出版社, 2002. 172-179. Zhu Y X, Li Y. Modern Molecular Biology. 2nd ed. Beijing: Higher Education Press, 2002. 172-179.

[6] Yau S Y, Keshavarz-Moore E, Ward J. Host strain influences on supercoiled plasmid DNA production in Escherichia coli: Implications for efficient design of large-scale processes. Biotechnol Bioeng, 2008, 101(3): 529-544.

[7] Schleef M, Blaesen M. Production of plasmid DNA as a pharmaceutical methods in molecular biology. Gene Therapy of Cancer, 2009, 542: 471-495.

[8] Zhang Q L, Bi J J, Xiao F J, et al. Production of plasmid DNA encoding human hepatocyte growth factor for gene therapy, Biotech Appl Biochem, 2008, 49(1): 11-16.

[9] Chen Z Y, He C Y, Meuse L, et al. Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther, 2004, 11(10): 856-864.

[10] Chen Z Y, He C Y, Ehrhardt A, et al. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Molecular Therapy, 2003, 8(3):495-500.

[11] Mayrhofer P, Blaesen M, Schleef M, et al. Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med, 2008, 10: 1253-1269.

[12] Carnes A E, Luke J M, Vincent J M, et al. Plasmid DNA fermentation strain and process-specific effects on vector yield, quality and transgene expression. n/a. doi: 10.1002/bit.22936.

[13] Carnes A E. Fermentation design for the manufacture of therapeutic plasmid DNA. BioProcess Int, 2005, 36-44.

[14] Tejeda-Mansir A, Mmontesinos R. Upstream processing of plasmid DNA for vaccine and gene therapy applications. Recent Patents on Biotechnology, 2008, 2: 156-172.

[15] Mairhofera J, Cserjan-Puschmanna M, Striednera G, et al. Marker-free plasmids for gene therapeutic applications-Lack of antibiotic resistance gene substantially improves the manufacturing process. J Biotechnol, 2010, 146: 130-137.

[16] Schorr J, Moritz P, Breul A, et al. Production of plasmid DNA in industrial quantities according to cGMP guidelines. Methods Mol Med, 2006, 127: 339-350.

[17] Meacle F J, Lander R, Ayazi S P, et al. Impact of engineering flow conditions on plasmid DNA yield and purity in chemical cell lysis operations. Biotechnol Bioeng, 2004, 87(3): 293-302.

[18] Hebel H, Attra H, Khan A, et al. Successful parallel development and integration of a plasmid-based biologic, container/closure system and electrokinetic delivery device. Vaccine, 2006, 24(21): 4607-4614.

[19] Li X L, Jin H L, Wu Z F, et al. A continuous process to extract plasmid DNA based on alkaline lysis. Nat Protocols, 2008, 3(2): 176-180.

[20] Urthaler J, Ascher C, Wohrer H, et al. Automated alkaline lysis for industrial scale cGMP production of pharmaceutical grade plasmid-DNA. J of Biotechn, 2007, 128: 132-149.

[21] Theodossiou I, Conllins I J, Ward J M, et al. The processing of a plasmid-based gene from E.coli. primary recovery by filtration. Bioprocess Eng, 1997, 16:175-183.

[22] Eon-Duval A, Gumbs K, Ellett C. precipitation of RNA impurities with high salt in a plasmid DNA purification process: use of experimental design to determine reaction conditions. Biotechnol Bioeng, 2003, 83(5): 544-553.

[23] Monteiro G A, Ferreira G N M, Cabral J M S, et al. Analysis and use of endonuclease activities in Escherichia coli lysates during the primary isolation of plasmids for gene therapy. Biotechnol Bioeng. 1999, 66: 189-194.

[24] Frerix A, Geilenkirchen P, Muller M, et al. Separation of genomic DNA, RNA, and open circular plasmid DNA from supercoiled plasmid DNA by combining denaturation, selective renaturation and aqueous two-phase extraction. Biotechnol Bioeng, 2007, 96(1): 57-66.

[25] German P G, Prazeres D M F, Guzman R, et al. Purification of plasmid DNA using tangential flow filtration and tandem anion-exchange membrane chromatography. Bioprocess Biosyst Eng, 2009, 32: 615-623.

[26] 邵英光, 李京华, 魏桂林, 等. 内毒素的去除策略. 广州化学, 2003, 28(2): 38-45. Shao Y G, Li J H, Wei G H, et al. Guangzhou Chemistry, 2003, 28(2): 38-45.

[27] 蔡慧丽. 生物技术药品分离纯化过程中内毒素的去除. 海峡药学, 2006, 18(2): 157-159. Cai H L. Strait Pharmaceutical Journal, 2006, 18(2): 157-159.

[28] Rezaee A, Ghanizadeh G, Behzadiyannejad G, et al. Adsorption of endotoxin from aqueous solution using bone char. Bull Environ Contam Toxicol, 2009, 82: 732-737.

[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[3] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[4] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[5] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[6] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[7] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[8] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[9] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[10] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[11] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[12] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[13] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[14] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[15] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.