Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (11): 112-116    DOI:
    
Biomaterial Polyhydroxyalkanoate Synthesized from Renewable Biodiesel Coproduct
HU Feng-qing 1,HUI Jing 1,2
1.School of Life Sciences, Liaoning University, Shenyang 110036, China
2.College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110003, China
Download: HTML   PDF(384KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A large amount of biodiesel coproducts will seriously affect the environment and economic due to rapid development of biodiesel industry. The questions on how to apply new idea and technology to deal with these coproducts will be one of major factors which will restrict the development of biodiesel industry. Nowadays, polyhydroxyalkanoates (PHAs), which could be broadly applied in many fields, are becoming the investigative hotspot. However, the cost of PHA production is particularly high. One of major questions considered by scientists is to select the cheaper feedstock so as to synthesize PHA. Biodiesel coproduct can be used as feedstock of PHA synthesis. It will help to solve the questions of biodiesel coproduct and cost of feedstock, which will ensure the steady and continuable development of biodeisel industry. This review summarized the latest progress in which biodiesel coproducts were used to synthesize PHA.



Key wordsBiodiesel cproduct      Polyhydroxyalkanoate      Feedstock     
Received: 25 June 2009      Published: 07 December 2009
ZTFLH:  Q81  
Cite this article:

HU Feng-Qiang, HUI Jing-. Biomaterial Polyhydroxyalkanoate Synthesized from Renewable Biodiesel Coproduct. China Biotechnology, 2009, 29(11): 112-116.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I11/112

[1]   Meng X, Yang J M, Xu X, et al. Biodiesel production from oleaginous microorangism. Renewable Enerzy, 2009, 34:1~5
[2]   Du W, Li W, Sun T, et al. Perspectives for biotechnlogical production of biodiesel and impacts. Appl Microbiol Biotechnol, 2008, 79:331~337
[3]   Ashby R D, Solaiman D K Y, Foglia TA. Bacterial poly(hydroxyalkanoate) polymer production from biodiesel coproduct stream. J Polym Environ, 2004, 12(3):105~112
[4]   Mothes C, Schnorpfeil C, Ackermann J U. Production of PHB from crude glycerol. Eng Life Sci , 2007 ,7(5):475~479
[5]   谭艳来, 欧阳益, 汪永. 生物柴油副产物甘油精制工艺研究. 中国油脂, 2007, 32(5):44~46 Tan Y L,OUYANG Y, Wang Y. China Oils and Fats, 2007, 32(5):44~46
[6]   高荫愉, 郭磊, 林向阳, 等. 生物柴油副产物甘油与综合利用前景. 农产品加工(学刊), 2007, 106(7): 26~29 Gao Y Y, Guo L, Lin X Y, et al. Academic Periodical of Farm Products Processing, 2007, 106(7):26~29
[7]   McCoy M. Glycerin surplus plants are closing, and new uses for the chemical are being found. Chem Eng News, 2006, 84(6): 7
[8]   Pachauri N, He B. Valueadded utilization of crude glycerol from biodiesel production: a survey of current research activities. Amercian Society of Agriculturical and Biological Engineers (ASABE) Meeting Presentation, 2006, 066223
[9]   许赟珍, 欧先全, 郭妮妮, 等. 生物柴油副产物甘油的高附加值利用. 过程工程学报, 2008, 8(4): 695~702 Xu B Z, OU X Q, Guo N N, et al. The Chinese Journal of Process Engineering, 2008, 8(4):695~702
[10]   Da Sliva G P, Mack M, Contiero J. Glycerol: a promosing and abuntant carbon source for industrial microbiology. Biotechnol Adv, 2009, 27:30~39
[11]   王璐, 张宏武, 张晓梅, 等. 微生物对生物柴油副产物甘油的利用研究进展. 应用与环境生物学报, 2008, 14(6): 885~889 Wang L, Zhang H W, Zhang X M, et al. Chin J Appl Environ Biol, 2008, 14(6): 885~889
[12]   刘德华, 孙燕, 欧先金. 一种甘油生产乳酸的方法. 中国专利: 200810102824 Liu D H, Sun Y, Ou X Q. China patent: 200810102824
[13]   Doi Y, Steinbüchel A. Biopolymers WileyVCH. Weinheim, Germany, 2002
[14]   Suriyamongkol P, Weselake R, Narine S, et al. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants. Biotechnol Adv, 2007, 25(2): 148~175
[15]   Shangguan Y Y,Wang Y W,Wu Q,et al.The mechanical properties and in vitro biodegradation and biocompatibility of UVtreated poly(3hydroxybutyrateco3hydroxyhexanoate). Biomaterials,2006,27(11):2349~2357
[16]   Ju X,Guo B H,Zhang Z M,et al.Direct AFM observation of crystal twisting and organization in banded spherulites of chiral poly(3hydroxybutyrateco3hydroxyhexanoate). Macromolecules,2004,37:4118~4123
[17]   Wang Y W, Mo W K, Yao H L, et al. Biodegradation studies of poly (3hydroxybutyrateco3hydroxyhexanoate). Polym Degrad Stability, 2004, 85:815~821
[18]   Wang Y W, Wu Q, Chen G Q. Poly (3hydroxybutyrateco3hydroxyhexanoate) scaffolds with good biocompatibility for osteoblast proliferation and differentiation. Biomaterials, 2004, 25 (4):669~675
[19]   Wang Z X, Itoh Y, Hosaka Y, et al. Novel transdermal drug delivery system with polyhydroxyalkanoate and starburst polyamidoamine dendrimer. J Biosci Bioeng, 2003, 95(5):541~543
[20]   Ueda H, Tabata Y. Polyhydroxyalkanoate derivatives in current clinical applications and trials. Adv Drug Delivery Rev, 2003, 55:501~518
[21]   Hu F Q, Hu J, Zhu L, et al. Utilize PHBHHx microcapsules to establish novel drug delivery system. The 3rd international pharmaceutical symposium (shanghai 2007), 182~186
[22]   Chen G Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005, 26:6565~6578
[23]   Qu X H, Wu Q, Zhang K Y, et al. In vivo studies of poly (3hydroxybutyrateco3hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials, 2006, 27:3540~3548
[24]   Qu X H, Wu Q, Liang J, et al. Effect of 3hydroxyhexanoate content in poly(3hydroxybutyrateco3hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials, 2006, 27:2944~2950
[25]   Qu X H, Wu Q, Liang J, et al. Enhanced vascularrelated cellular affinity on surface modified copolyesters of 3hydroxybutyrate and 3hydroxyhexanoate (PHBHHx). Biomaterials, 2005, 26(34):6991~7001
[26]   Zheng Z, Bei F F, Tian H L, et al. Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterial, 2005, 26(17):3537~3548
[27]   Cheng S, Zhao Y, Zou B, et al. Effect of poly (hydroxybutyratecohydroxyhexanoate) microparticles on growth of murine fibroblast L929 cells. Polym Degradation Stability, 2006, 91(12):3191~3196
[28]   Phili PS, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol, 2007, 82(3):233~247
[29]   Martina M, Hutmacher D W. Biodegradable polymers applied in tissue engineering research: a review. Polym Int, 2007, 56(2):145~157
[30]   刘盛辉, 郎美东. 新一代生物医用材料. 高分子通报, 2005, 6:113~128 Liu S H, Lang M D. Polymer Bulletin, 2005, 6:113~128
[31]   Hench L L, Polak J M. Thirdgeneration biomedical materials. Science, 2002, 295:1014~1017
[32]   Solaiman D K Y, Ashby R D. Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoate). Appl Microbiol Biotech, 2006, 71:783~789
[33]   胡风庆. 嗜水气单胞菌聚羟基饱和脂肪酸酯合成调控初步研究.沈阳:沈阳药科大学,制药工程学院,2005 Hu F Q.Primarily study on regulation and control of polyhydroxyalkanoates biosynthesis in Aeromonas hydrophila.Shenyang Pharmaceutical University,College of pharmaceutical Engineering, 2005
[34]   Bormann E J, Roth M. The production of polyhydroxyalkanoate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett, 1999, 21:1059~1063
[35]   Nikel P, Pettinari J, Mendez B. Poly(3hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fedbatch microaerobic cultures. Appl Microbiol Biotechnol, 2008, 77(6):1337~1343
[36]   Ashby R D, Solaiman D K Y, Foglia T A. Synthesis of short/ mediumchainlength poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules, 2005, 6:2106~2112
[37]   Koller M, Bona R, Braunegg G, et al. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules,2005,6(2):561~565
[38]   Mazur L P, da Silva D D, Grigull V H, et al. Strategies of biosynthesis of poly(3hydroxybutyrate) supplemented with biodiesel obtained from rice bran oil. Materials Science and Engineering C, 2009, 29:583~587
[39]   Cavalheiro J M B T, de Almeida M C M D, Grandfils C, et al. Poly(3hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem, 2009, 44:509~545
[1] Zhi-qiang ZHAO,Tamekou Stephen LACMATA,Mo XIAN,Xiu-tao LIU,Xin-jun FENG,Guang ZHAO. Biosynthesis of Poly (3-hydroxypropionate-co-lactate) from Glycerol by Engineered Escherichia coli[J]. China Biotechnology, 2018, 38(2): 46-53.
[2] DOU Yi-han, LI Ying, ZHAO Peng, FAN Ru-ting, TIAN Ping-fang. Metabolic Engineering of Klebsiella pneumoniae for the Production of Poly(3-Hydroxypropionate) from Glycerol[J]. China Biotechnology, 2017, 37(6): 86-92.
[3] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.