Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (04): 44-52    DOI:
    
Development of a Freeliving Nematode Panagrellus redivivus in Saccharomyces cerevisiae with cip Genes
YOU Juan1, HUANG Jian-lin2, CAO Li3, HAN Ri-chou3
1. Department of Biochemistry & Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China;
2. Guangzhou Institute of Metrology & Testing Technology, Guangzhou 510030, China;
3 Guangdong Entomological Institute, Guangzhou 510260, China
Download: HTML   PDF(1204KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CipA and CipB are two types of intracellular crystalline inclusion proteins produced by Photorhabdus luminescens bacteria, which are symbionts of entomopathogeic Heterorhabditis nematodes. To understand the biological function of these proteins for free living Panagrellus redivivus nematodes, recombinant Saccharomyces cerevisiae expression system of Cip proteins were constructed and the resulting yeast cells were used to feed the sterile J1 juveniles of P.redivivus. In recombinant yeast cells with CipA and/or CipB, the nematodes developed about 24 h faster than those in the yeast cells without Cip proteins. This promotion was reflected in two aspects: to short the cycle time and to enhance the reproductive ability of P. redivivus nematode. It means that the nutrient sources from entomopathogeic nematodes are acceptable by this free-living nematode.



Key wordsCrystalline inclusion protein      Saccharomyces cerevisiae      Panagrellus redivivus     
Received: 16 August 2010      Published: 26 April 2011
ZTFLH:  Q819  
Cite this article:

YOU Juan, HUANG Jian-lin, CAO Li, HAN Ri-chou. Development of a Freeliving Nematode Panagrellus redivivus in Saccharomyces cerevisiae with cip Genes. China Biotechnology, 2011, 31(04): 44-52.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I04/44


[1] Santiago C B, Ricci M, ReyesLampa A. Effect of nematode Panagrellus redivivus density on growth, survival, feed consumption and carcass composition of bighead carp Aristichthys nobilis (Richardson) larvae. J Appl Ichthyol, 2004, 20(1): 22-27.

[2] Biedenbach J M, Smith L L, Thomsen T K, et al. Use of the nematodes Panagrellus redivivus as an Artemia replacement in a larval penaeid diet. J World Aquacult Soc, 1989, 20(2): 61-71.

[3] Moheny L L, Lighter D V, Williams R R, et al. Bioencapsulation of therapeutic quantities of the antibacterial Romet30 in nauplii of the brine shrimp Artemia and in the nematode Panagrellus redivivus. J World Aquacult Soc, 1990, 21(3): 186-191.

[4] Hechler H C. Reproduction, chromosome number, and postembryonic development of Panagrellus redivivus (Nematoda: Cephalobidae). J Nematol, 1970, 2(4): 355-361.

[5] Fisher C M, Fletcher D J. Novel feeds for use in aquaculture: U S Pat, PCT/GB95/00021. 1995.

[6] Ricci M, Fifi A P, Ragni A, et al. Development of a lowcost technology for mass production of the free-living nematode Panagrellus redivivus as an alternative live food for first feeding fish larvae. Appl Microbiol Biotehnol, 2002, 60(5): 556-559.

[7] Bowen D J, Ensign J C. Isolation and characterization of protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol, 2001, 67(10): 4834-4841.

[8] Hussein M, Ehlers R U. Significance of the Photorhabdus luminescens inclusion protein for the development of Heterorhabditis bacteriophora. In: COST 819 Entomopathogenic nematodes-Virulence factors and secondary metabolites from symbiotic bacteria of entomopathogenic nematodes, Luxembourg, 2001.

[9] You J, Liang S, Cao L, et al. Nutritive significance of crystalline inclusion proteins of Photorhabdus luminescens in Steinernema nematodes. FEMS Microbiol Ecol, 2006, 55(2): 178-185.

[10] Akhurs R J. Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol, 1980, 121(2): 303-309.

[11] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680-685.

[12] Lunau S, Stoessel S, SchmidtPeisker A J, et al. Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica, 1993, 39(1-4): 385-399.

[1] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[2] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[3] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[4] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[5] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[6] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[7] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[8] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[9] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[10] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.
[11] LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(4): 41-45.
[12] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.
[13] ZHAO Xiu-juan, ZHENG Xiao-dong, XUE Tao-tao, CAI Lu. Comparison of ARS Element Forming Nucleosome on Saccharomyces cerevisiae YPH499 Ⅲ Chromosome in vitro[J]. China Biotechnology, 2014, 34(11): 34-41.
[14] LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai. The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice[J]. China Biotechnology, 2014, 34(11): 47-53.
[15] YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 75-83.