Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 106-111    DOI: Q819
    
Optimization of Autotrophic Cultivation of Lipids Production for Biodiesel by Chlorella vulgaris with Response Surface Methodology
ZHENG Hong-li1,GAO Zhen1,HUANG He1,2,JI Xiao-jun1,BAI Yue-hua3,LI Wen-qi3
1.College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
2.State Key Laboratory of MaterialsOriented Chemical Engineering, Nanjing 210009, China
3.Petroleum Research Institute, China National Petroleum Corporation, Beijing 100029, China
Download: HTML   PDF(944KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Response surface methodology was used to optimize the autotrophic cultivation conditions for lipids production by Chlorella vulgaris in a 2-L airlift photobioreactor. In the first optimization step, a Plackett-Burman design was used to evaluate the influence of ten related factors and it was found out that KNO3 concentration, temperature and CO2 concentration influenced lipids production significantly. Subsequently, the path of steepest ascent was used to approach the optimal region of the cultivation conditions. In the third step, KNO3 concentration, temperature and CO2 concentration were further optimized using central composite designs and response surface analysis and the optimum conditions were that KN03 concentration was 0.31 g/L, temperature was 26.5 ℃ and CO2 concentration was 6.80%. Under optimum conditions, the lipid yield was 0.42 g/L and it was increased by two times than that under the conditions before optimized. Chlorella vulgaris was cultured in a 10-L airlift photobioreactor under optimum conditions.



Key wordsChlorella vulgaris      Cultivation conditions      Response surface      Methodology      BiodieselLipids     
Received: 21 April 2010      Published: 25 August 2010
Cite this article:

ZHENG Hong-Li, GAO Zhen, HUANG He, JI Xiao-Dun, BAI Ti-Hua, LI Wen-Qi. Optimization of Autotrophic Cultivation of Lipids Production for Biodiesel by Chlorella vulgaris with Response Surface Methodology. China Biotechnology, 2010, 30(08): 106-111.

URL:

https://manu60.magtech.com.cn/biotech/Q819     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/106

[1] 郑洪立,张齐,马小琛,等.产生物柴油微藻培养研究进展.中国生物工程杂志,2009, 29(3): 110116. Zheng H L, Zhang Q, Ma X C, et al. China Biotechnol, 2009, 29(3): 110116. 
[2] 黄和,郑洪立,高振,等.一种产生物柴油微藻的规模化收获方法及其装置.中国,CN101586078. 20091125. Huang H, Zheng H L, Gao Z, et al. China, CN101586078. 20091125. 
[3] Yusuf C. Biodiesel from microalgae. Biotechnol Adv, 2007, 25: 294306. 
[4] Liliana R, Graziella C Z, Niccolò B, et al. Microalgae for oil:strain selection,induction of lipid synthesis and outdoor mass cultivation in a lowcost photobioreactor. Biotechnol and Bioeng, 2009, 102: 100112. 
[5] 谯顺彬,迟海洋,张奕婷,等。螺旋藻混合营养培养基响应面法的优化研究. 食品科学,2009,30(7): 109114. Qiao S B,Chi H Y, Zhang Y T, et al. Food Science, 2009,30(7): 109114. 
[6] Dyer W M, Bligh E G. A rapid method of lipid extraction and purification. Can J Biochem Physiol, 1959, 37: 911917. 
[7] Converti A, Casazza A A, Ortiz E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng and Processing, 2009, 48: 11461151. 
[8] Davies O L, George E P, Lewis R C.The Design and Analysis of Industrial Experiments. 2nd ed. London: Longman Group Limited, 1978.136152. 
[9] Montgomery D C. Design and Analysis of Experiments. 3rd ed. New York: John Wiley & Sons, 1991. 216247. 
[10] Yoo C, Jun S Y, Lee J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technol, 2010, 101: S71S74. 
[11] 曾文炉,赵飞飞,曹照根,等。利用响应面方法优化转小鼠金属硫蛋白I 基因聚球藻 7002的培养基成分。生物工程学报,2008,24(1):130136. Zeng W L, Zhao F F, Cao Z G, et al. Chinese Journal of Biotechnology, 2008, 24(1):130136. 
[12] Renaud S M, Thinh L V, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 2002, 211: 195214. 
[13] Pe′rez E B, Pina I C, Rodriguez L P. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochemical Engineering Journal,2008, 40: 520525. 
[14] Rao A R, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technol, 2007, 98: 560564. 
[15] Zhang D H, Lee Y K, Ng M L, et al. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J Appl Phycol, 1997, 9:147155. 
[16] 刘志媛,王广策.铁促进海水小球藻油脂积累的动态过程.海洋科学,2008,32(11):5659. Liu Z Y,Wang G C. Marine Sciences, 2008,32(11):5659. 
[17] Abe F, Kato C,Horikoshi K. Pressureregulated metabolism in Microorganisms. Trends in Microbiology, 1999, 7(11):447453.

[1] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[2] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[3] MENG Ying-ying, YAO Chang-hong, LIU Jiao, SHEN Pei-li, XUE Song, YANG Qing. Review and Evaluation of Microalgal Components Determination Methods[J]. China Biotechnology, 2017, 37(7): 133-143.
[4] ZHANG Xu-ning, QUAN Chun-shan, LIAO Ying-ling, LIU Ke-huan, XIONG Wen, FAN Sheng-di. Expression,Purification and Identification of AgrA, a Response Regulator Protein of Two-component Signal Transduction System in Staphylococcus aureus[J]. China Biotechnology, 2015, 35(5): 32-40.
[5] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[6] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[7] JIA Meng-jiao, LIU Rui, LU Jie-lin, ZHU Yun-han, WANG Ling-chong, WANG Xin-zhi, WU Hao, LU Ming-ming. Study on Preparation of ACE Inhibitory Enzymatic Peptides of Cyanea[J]. China Biotechnology, 2014, 34(3): 103-108.
[8] GAO Xue-li, WU Jian-ping, XU Gang, YANG Li-rong. Isolation, Identification of Trichoderma ghanense and Optimization of Spores Production[J]. China Biotechnology, 2014, 34(2): 84-92.
[9] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[10] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[11] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[12] WU Ying-chun, MA Qin-qin, DING Xian-feng, ZHANG Kai, LIU Li-li, GUO Jiang-feng. Expression of XRN1 Protein and Optimization of Fermentation Medium with Response Surface Method[J]. China Biotechnology, 2013, 33(4): 121-128.
[13] SUN Guo-xia, WANG Jun, DING Wei-tong, WANG Kai-xuan, WU Fu-an. Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid[J]. China Biotechnology, 2013, 33(3): 130-134.
[14] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[15] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.