Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (04): 7-11    DOI:
    
Intein-mediated Soluble Expression, Purification and Functional Identification of Human AR DBD in E. coli
YAO Guang-xin1, ZHANG Yi-xuan1, HU Shuang-gang2,3
1. Shenyang Pharmaceutical University, Shenyang 110016, China;
2. Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Institute of Biochemistry and Cell Biology, Shanghai 200031, China;
3. State Key Laboratory of Molecular Biology, Shanghai 200031, China
Download: HTML   PDF(1081KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Androgen receptor (AR) is a transcription factor belonging to Nuclear Hormone Receptor Superfamily and its DNA binding domain (DBD) is essential for its binding affinity and specificity to androgen response element. Traditional method to obtain the recombinant AR DBD is fusing it to glutathione S epoxide transferase or Staphylococcus aureus proteinA in order to improve the solubility and yield. The question is the fusion tag might affect the characterization of target protein, and removing of the fusion tag is usually cumbersome. In order to obtain functional AR DBD without fusion tag in an easy and convenient way, the sequence encoded human AR 520~644 amino acids which includes the DBD is amplified by PCR, and then inserted into pTWIN1 vector. After optimizing of the inducing temperature and IPTG concentration, almost all recombinant protein is expressed in a soluble manner at 20℃ and 30℃ in host E.coli strain BL21(DE3). The whole cell lysate is then loaded to Chitin beads and the optimal pH for self-cleavage is determined. Using this method the AR DBD without any fusion tags is purified by only one step and the product shows high purity and good performance in electrophoretic mobility shift assay.



Key wordsAndrogen receptor      DNA binding domain      Intein     
Received: 07 January 2011      Published: 26 April 2011
ZTFLH:  Q786  
Cite this article:

YAO Guang-xin, ZHANG Yi-xuan, HU Shuang-gang. Intein-mediated Soluble Expression, Purification and Functional Identification of Human AR DBD in E. coli. China Biotechnology, 2011, 31(04): 7-11.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I04/7


[1] Heinlein C A, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev, 2002, 23(2):175-200.

[2] Heemers H V, Tindall D J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev, 2007, 28(7):778-808.

[3] Patrao M T, Silva E J, Avellar M C. Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arq Bras Endocrinol Metabol, 2009, 53(8):934-945.

[4] Jin L, Li Y. Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev, 2010, 62(13):1218-1226.

[5] De Vos P, Claessens F, Winderickx J, et al. Interaction of androgen response elements with the DNA-binding domain of the rat androgen receptor expressed in Escherichia coli. J Biol Chem, 1991, 266(6):3439-3443.

[6] Roche P J, Hoare S A, Parker M G. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol, 1992, 6(12):2229-2235.

[7] Nemoto T, Ohara-Nemoto Y, Shimazaki S, et al. Dimerization characteristics of the DNA-and steroid-binding domains of the androgen receptor. J Steroid Biochem Mol Biol, 1994, 50(5-6):225-233.

[8] Shaffer P L, Jivan A, Dollins D E, et al. Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci U S A, 2004, 101(14):4758-4763.

[9] Fan L, Hardy D O, Catteral J F, et al. Identification and characterization of the minimal androgen-regulated kidney-specific kidney androgen-regulated protein gene promoter. Acta Biochim Biophys Sin, 2008, 40(12):979-988.

[10] Haendler B, Schuttke I, Schleuning W D. Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3eta. Mol Cell Endocrinol, 2001, 173(1-2):63-73.

[11] 许成钢,范晓军,张志云,等. Intein介导的重组昆虫毒素BmKIT在大肠杆菌中的可溶性表达、纯化及活性分析. 生物工程学报, 2007, 23(6):989-994. Xu C G, Fan X J, Zhang Z Y, et al. Chinese Journal of Biotechnology, 2007, 23(6): 989-994.

[12] Esipov R S, Stepanenko V N, Chupova L A, et al. Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system. Protein Expr Purif, 2008, 61(1):1-6.

[13] Collins E D, Espinoza A, Le L T, et al. Cloning the human vitamin D receptor into the pTwin-1 expression vector. J Steroid Biochem Mol Biol, 2010, 121(1-2):121-123.

[1] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[2] SHI Lei, TANG Li-li, MA Xing-yuan, WANG Tian-wen, MA Fei, WANG Ping. Efficient Preparation of an Anti-tumor Protein TmSm by Reversible Phase Transition of ELPs and Self-cleaving Function of Intein[J]. China Biotechnology, 2013, 33(10): 89-95.
[3] QIU Pei-ran, HU Fang, LIN Ying, MENG Qing. Natural Extein Free Screening System for Intein Directed-Evolution[J]. China Biotechnology, 2013, 33(1): 79-83.
[4] XUN Qi-jing, LIN Ying, QIU Pei-ran, MENG Qing. High Splicing Activity of Ter DnaE-3 Mini-intein through Directed Evolution[J]. China Biotechnology, 2012, 32(05): 79-84.
[5] LIN Ying, ZHOU Qian, QUN Qi-jing, MENG Qing. Cleavage of Split-Inteins with High Splicing Activity[J]. China Biotechnology, 2011, 31(8): 97-101.
[6] ZHANG Jing, LIU Huan, ZHOU Jing, LIU Jian-Hua. Large Protein Production Through Split Intein-Mediated Trans-Splicing[J]. China Biotechnology, 2009, 29(12): 74-78.
[7] XIE Shan-Shan, TU Rong-Cha, CENG Le, LI Juan, WANG Jing-Jing, HONG An. Preparation and Identification of Recombinant Vasoactive Intestinal Peptide[J]. China Biotechnology, 2009, 29(11): 29-35.