Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology
研究报告     
Fetal membrane derived adherent cells:a novel source for mesenchymal stem cells
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Objective: To established a method for isolation and purification of fetal membrane derived adherent cells (FMDACs), and investigate the biological characteristics of FMDACs. Method: FMDACs were isolated with trypsin and cultured in vitro. Inducing FMDACs in vitro differentiate into osteoblasts and adipocytes. FACS and immunocytochemistry technique was used to examine the cell surface antigen. The genetic stability was verified by karyotype analysis. Results: Fetal membrane derived adherent cells were successfully isolated and expanded in vitro. It had strong proliferative ability. FMDACs were positive for CD44 and CD29, but negative for CD34, CD14 and CD45. FMDACs were differentiated into osteoblasts and adipocytes after inducement. The karyotype was stable in the sixth-passaged FMDACs and the tumorigenicity was not found. Conclusion: FMDACs have the possibility of a multipotent stem cells, which have strong capacities of self-renewal and multidirectional differentiation. The genetic background of FMDACs was stable. FMDACs may be used as a kind of novel seed cells for tissue engineering.

Key wordsFetal membrane      Differentiation      Fetal membrane derived adherent cells      Mesenchymal stem cells     
Received: 28 December 2005      Published: 25 July 2006
Cite this article:

. Fetal membrane derived adherent cells:a novel source for mesenchymal stem cells. China Biotechnology, 2006, 26(07): 7-12.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2006/V26/I07/7

[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[4] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[5] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[6] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[7] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[8] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[9] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[10] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[11] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[12] Yu CHENG,Qiong SHI,Li-qin AN,Meng-tian FAN,Gai-gai HUANG,Ya-guang WENG. BMP7 Gene Silencing Inhibits Osteogenic Differentiation of Porcine Arotic Valve Interstitial Cells Induced by Osteogenic Induction Medium[J]. China Biotechnology, 2019, 39(5): 63-71.
[13] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[14] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[15] Yan ZHENG,Huan YAO,Ke YANG. SFRP5 Inhibites Osteogenic Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Induced by BMP9[J]. China Biotechnology, 2018, 38(7): 7-13.