Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology
综述     
Advances of Lentiviral Vectors Design and Application
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  As an efficient gene transfer vehicle lentiviral vector has been widely used in the gene therapy research. Comparing with other retrovirus vectors, lentiviral vectors have the unique ablility of transfecting non-dividing cells and terminal differentiated cells. In addition lentiviral vectors can accommodate two or more promoters and can carry larger foreign gene insertions. Now the new generation of lentiviral vectors encoding transcriptional control sequence provides effective means for the regulation of foreign gene expression. This review summarizes the development of lentiviral vectors and its application in the gene therapy field.

Key wordstet-on/off system      gene therapy      lentiviral vectors      transcriptional regulation     
Received: 15 May 2006      Published: 25 November 2006
Cite this article:

. Advances of Lentiviral Vectors Design and Application. China Biotechnology, 2006, 26(11): 70-75.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2006/V26/I11/70

[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[3] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[4] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[5] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[6] Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation[J]. China Biotechnology, 2018, 38(7): 94-101.
[7] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[8] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[9] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.
[10] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[11] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[12] XUE Jin-feng, XUE Zhi-gang, CHEN Yi-yao, LI Zhuo, YIN Biao, WU Ling-qian, LIANG De-sheng. In vitro and in vivo Gene Therapy Research of CDTK Genes Drove by Enhanced Tumor-specific Promoter in Liver Cancer[J]. China Biotechnology, 2015, 35(6): 1-7.
[13] XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy[J]. China Biotechnology, 2015, 35(1): 75-81.
[14] YUAN Di, YANG Yi-shu, LI Ze-lin, ZENG Yi. Transcriptional Regulation of HIV-1 Gene Expression[J]. China Biotechnology, 2014, 34(5): 80-86.
[15] MA Bu-yun, HE Wan-wan, ZHOU Li, WANG Yi-gang. The Study on Anticancer Effect of Targeting Gene-Virus ZD55-XAF1 in Liver Cancer Xenograft of Mice and Its Safety[J]. China Biotechnology, 2014, 34(1): 15-20.