Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2006, Vol. 26 Issue (0): 1-7    DOI:
    
purification and biological activities evaluation of diphtheria toxin expressed by gene engineering
Download: HTML   PDF(2101KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The principal purpose of this study is to set up the isolation methods for diphtheria toxin expressed by genes, to purify the toxin with complete biological activities, and to make researches on its toxicities. In the experiments, the target gene was inserted into the cloning vectors--pET22b, then the vectors were introduced into host cells -BL21(DE3). The expression of the toxin was induced by addition of IPTG. The expression products were purified by His-6 label affinity chromatography. Then the diphtheria toxin expressed was transferred to PVC membrane using semidry blotter to determine the amino acid sequence of N-terminal. The "nicked" diphtheria toxin linked by disulfide bond was gained by protease hydrolysis. At the same time, acute toxicities of diphtheria toxin in guinea pig, cytotoxicity in three kinds of cells were tested. The results indicated that the expression system established in the study expressed DT effectively. Amino acid sequencing of expressed DT gave the N- terminal sequence- MGADDVV…. This was identical with the experiment project. The LD50 of DT in guinea pig (ig) was 0.64μg/kg; and the IC50 values of DT in CHO-K1, BS-C1 and Hela were 1.709μg/ml, 1.424ng/ml and 28.947ng/ml respectively.



Key wordsdiphtheria toxin      gene expression      purification      biologic activity     
Received: 28 November 2005      Published: 15 June 2006
Cite this article:

. purification and biological activities evaluation of diphtheria toxin expressed by gene engineering. China Biotechnology, 2006, 26(0): 1-7.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2006/V26/I0/1

[1] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[2] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[3] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[4] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[5] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[6] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[7] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[8] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[9] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[10] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[11] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[12] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[13] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[14] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[15] Shi-jie LI,Yan-kun YANG,Meng LIU,Zhong-hu BAI,Jian JIN. Efficient Expression of SUMO Protease Ulp1 and Used to Express and Purified scFv by His-SUMO tag[J]. China Biotechnology, 2018, 38(3): 51-61.