Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (09): 98-104    DOI: Q943.2
    
Research Advances of Plant MADS-box Gene FRUITFULL (FUL)
CHU Ting-ting1,2,XIE Hua 1,2,XU Yong2,MA Rong-cai1,2
1.College of Life Science, Capital Normal University, Beijing 100048,China
2.Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,China
Download: HTML   PDF(498KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In flowering plants, MADS-box genes control diverse developmental processes. FRUITFUL (FUL) is a MADS-box gene which functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. Its homeotic genes also play important roles in regulating plant growth and development in other plants. This article reviews the research advances in the expressional patterns and functions of FUL gene and its homeotic genes. And the potential value in the breeding of crop and orchards is discussed.



Key wordsMADS-box gene      FUL      Plant development     
Received: 03 March 2010      Published: 25 August 2010
Cite this article:

CHU Ting-Ting, XIE Hua, XU Yong, MA Rong-Cai. Research Advances of Plant MADS-box Gene FRUITFULL (FUL). China Biotechnology, 2010, 30(09): 98-104.

URL:

https://manu60.magtech.com.cn/biotech/Q943.2     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I09/98

[1] Shore P, Sharrocks A D. The MADSbox family of transcription factors. Biochemistry, 2005, 229: 113. 
[2]Thomas J. Plant development going MADS. Plant Molecular Biology, 2001, 46: 515520. 
|[3] AlvarezBuylla E R, Pelaz S, Liljegren S J, et al. An ancestral MADSbox gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA , 2000, 97: 53285333. 
[4] Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development. Biol Chem, 1997, 378: 10791101. 
[5] Saedler H, Huijser P. Molecular biology of flower development in Antirrhinum majus (snapdragon). Gene, 1993, 135: 239243. 
[6] Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203209. 
[7] Zahn, L M, Kong H, LeebensMack J H, et al. The evolution of the SEPALLATA subfamily of MADSbox genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics , 2005, 169: 22092223. 
[8] Becker A, Theiβen G. The major clades of MADSbox genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 2003, 29: 464489. 
[9] Litt A, Irish V F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implications for the evolution of floral development. Genetics, 2003, 165: 821833. 
[10] Ferrándiz C, Gu Q, Martienssen R, et al. Redundant regulation of meristem identity and plant architecture by FRUITFULL,APETALA1 and CAULIFLOWER. Development, 2000, 127: 725734. 
[11] Mandel M A, Yanofsky M F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell, 1995, 7: 17631771. 
[12] Moon J, Lee H, Kim M, et al. Analysis of flowering pathways integrators in Arabidopsis. Plant Cell Physiol, 2005, 46: 292299. 
[13] Drobyazina P E, Khavkin E E. Homologs of APETALA1/FRUITFULL in Solanum plants. Russian Journal of Plant Physiology, 2005, 53 (2): 243249. 
[14] Borner R, Kampmann G, Chandler J, et al. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant Journal, 2000, 24 (5): 591 599. 
[15] Melzer S, Lens F, Gennen J, et al. Floweringtime genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet, 2008, 4 (12):14891492. 
[16] Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controling flower development. Nature, 1991, 353: 3137. 
[17] Poethig R S. Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development ,2009, 19:374378. 
[18]Müller B M, Saedler H, Zachgo S. The MADSbox gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. The Plant Journal, 2001, 28 (2): 169179. 
[19] Bamnolker P T, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 2005, 17: 2661 2675. 
[20] Gu Q, Ferrandiz C, Yanofsky M F, et al. The FRUITFULL MADSbox gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998, 125: 15091517. 
[21]Mitsuda N, Takagi M O. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity.The Plant Journal, 2008, 56, (5): 768778. 
[22] Sawa S, Watanabe K, Goto K, et al. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG related domains. Genes and Development, 1999, 13: 10791088. 
[23]stergaard L.Don’t ‘leaf’ now. The making of a fruit.Current Opinion in Plant Biology, 2009, 12: 3641. 
[24] Dinneny J R, Weigel D, Yanofsky M F. A genetic framework for fruit patterning in Arabidopsis thaliana. Development, 2005, 132: 46874696. 
[25] Liljegren S J, Ditta G S, Eshed Y, et al. SHATTERPROOF MADSbox genes control seed dispersal in Arabidopsis. Nature, 2000, 404: 766770. 
[26] Rajani S, Sundaresan V . The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 2001, 11 (24): 19141922. 
[27] Liljegren S J, Roeder A, Kempin S, et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell, 2004, 116 (6) : 843853. 
[28] Ferrándiz C,Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 2000, 289: 436438. 
[29] Ferrándiz C. Regulation of fruit dehiscence in Arabidopsis. Journal of Experimental Botany, 2002, 53 (377): 20312038. 
[30] Immink R G, Hannapel D J, Ferraario S, et al. A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development, 1999, 126: 51175126. 
[31] Pelucchi N, Fornara F, Favalli C, et al. Comparative analysis of rice MADSbox genes expressed during flower development. Sex Plant Reprod, 2002, 15:113122. 
[32] Preston J C, Kellogg E A.Conservation and divergence of APETALA1 /FRUITFULLlike gene function in grasses: evidence from gene expression analyses.The Plant Journal, 2007, 52, 6981. 
[33] Danilevskaya O N, Meng X, Selinger D A, et al. Involvement of the MADSbox gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol., 2008, 147: 2054 2069. 
[34]Sather D N, Golenberg E M. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. Planta , 2009, 229:507521. 
[35] Leseberg C H, Eissler C L, Wang X, et al. Interaction study of MADSdomain proteins in tomato. Journal of Experimental Botany, 2008, 59 (8):22532265. 
[36] Calonje M, Cubas P, MartínezZapater J M, et al. Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiology, 2004, 135: 14911501. 
[37] Cevik V, Ryder C D, Popovich A, et al.A FRUITFULLlike gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.) Tree Genetics & Genomes , 2010, 6:271279. 
[38] 徐勇, 张林, 马荣才. 桃(Prunus persica)中2个MADS box基因功能的初步鉴定和遗传作图.科学通报, 2008, 53 (5): 537543. Xu Y, Zhang L, Ma R C. Chinese Bulletin of Science. 2008, 53 (5): 537543. 
[39] Deyholos M K, Sieburth L E. Separable whorlspecific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell, 2000, 12 (10): 17991810. 
[40] Patterson S E. Cutting loose Abscission and dehiscence in Arabidopsis. Plant Physiol, 2001, 126, 494500. 
[41] stergaard L, Kempin S A, Bies D, et al. Pod shatter resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4: 4551. 
[42] Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol, 1999, 120: 969978. 
[43] Elo A, Lemmetyinen J, Turunen M L, et al. Three MADSbox genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant, 2001, 112: 95103.

[1] REN Qin, GUO Zhi-hong, WANG Ya-jun, XIE Zhong-kui, WANG Ruo-yu. RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes[J]. China Biotechnology, 2015, 35(6): 80-89.
[2] ZHANG Yin-chuan, LIU Meng-meng, ZHANG Ya-ting, GUI Fang, ZHANG Ai-hua, BI Lan, PAN Yong-bin. Construction and Screening of Recombinant Cell Line Expressing Fully-human mAbs against Human IgE[J]. China Biotechnology, 2015, 35(3): 66-74.
[3] LI Kun-peng, ZHU Hua-bin, HAO Hai-sheng, ZHAO Xue-ming, FENG Rong, QIN Tong, ZHANG Lin-bo, WANG Dong. The Strategies of Obtaining Full-length Sequence by PCR Amplification Technology[J]. China Biotechnology, 2012, 32(11): 115-123.
[4] LI Kun-peng, ZHU Hua-bin, HAO Hai-sheng, ZHAO Xue-ming, FENG Rong, QIN Tong, ZHANG Lin-bo, WANG Dong. The Strategies of Obtaining Full-length Sequence by PCR Amplification Technology[J]. China Biotechnology, 2012, 32(11): 115-123.
[5] . Cloning of Taxane 13α-hydroxylase from Taxus cuspidata and its transformation to Nicotiana tobacum[J]. China Biotechnology, 2008, 28(2): 53-58.
[6] CHEN Yuan-Ding Xiao LIU Xin-Yu XIONG Zhi-Liang CAO Yu-Ling WEN Qing-Huan ZHAO Yang YU Xing-Xiao Yin Chuan-Yin Li Yao-Chun FAN. Cloning of Full Genome and Genotyping of a Group A Human Rotavirus[J]. China Biotechnology, 2008, 28(2): 25-31.