Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (03): 112-118    DOI:
    
Anaerobic Fermentation of Synthesis Gas for Organic Acids and Alcohols Production
1.Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
2.Graduate School of Chinese Academy of Sciences,Beijing 100039,China
Download: HTML   PDF(874KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gasification of coal, oil, biomass or organic wastes generates synthesis gas, which consists primarily of CO, H2 and CO2. Synthesis gas may be used as substrates by some anaerobic bacteria to produce liquid fuels and chemicals such as ethanol, acetic acid, butanol and butyric acid. Anaerobic fermentation of synthesis gas is considered a promising and competing technology due to its advantages over catalytic techniques, and it's expected that synthesis gas fermentation will play a role in the conversion of biomass and organic wastes. Research progress in production of organic acids and alcohols via synthesis gas fermentation was reviewed, focusing on microorganisms, the metabolic pathway, key enzymes (especially carbon monoxide dehydrogenase /acetyl-CoA synthase) and bioreactors. Suggestions were also given to indicate areas where advances can be made.



Key wordsAnaerobic Fermentation      Synthesis Gas      Ethanol      Acetic acid     
Received: 05 November 2009      Published: 25 March 2010
Cite this article:

XU Hui-Juan, HU Jing-Liang, GUO Ying, PENG Xin-Shu, YUAN Zhen-Hong. Anaerobic Fermentation of Synthesis Gas for Organic Acids and Alcohols Production. China Biotechnology, 2010, 30(03): 112-118.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I03/112

[1] Phillips J R, Klasson K T, Clausen E C, et al. Biological production of ethanol from coal synthesis gas. Applied Biochemistry and Biotechnology. 1993, 3940(1): 559571. 
[2] Maschio G, Lucchesi A, Stoppato G. Production of syngas from biomass. Bioresource Technology. 1994, 48(2):119126. 
[3] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science. 2006, 311: 484489. 
[4] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews. 2006, 106:40444098. 
[5] Van Kasteren J M N. Cogasification of wood and polyethylene with the aim of CO and H2 production. Journal of Material Cycles and Waste Management. 2006, 8:9598. 
[6] Henstra A M, Sipma J, Rinzema A, et al. Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology. 2007, 18:200206. 
[7] Fontaine F E, Peterson W H, McCoy E, et al. A new type of glucose fermentation by Clostridium thermoaceticum. Journal of Bacteriology. 1942, 43(6): 701715. 
[8] Collins M D, Lawson P A, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. International Journal of Systematic Bacteriology. 1994, 44:812826. 
[9] Kerby R, Zeikus J G. Growth of Clostridium thermoacetium on H2/CO2 or CO as energy source. Current Microbiology. 1983, 8:2730. 
[10] Wood H G. A study of carbon dioxide fixation by mass determination of the types of C13acetate. The Journal of Biological Chemistry. 1952, 194: 905931. 
[11] Ljungdahl L G, Andreesen J R. Tungsten, a component of active formate dehydrogenase from Clostridium thermoaceticum. FEBS Letters. 1975, 54: 279282. 
[12] Ljungdahl L, Irion E, Wood H G. Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Federation Proceedings. 1966, 25: 16421648. 
[13] Drake H L, Hu S I, Wood H G. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. The Journal of Biological Chemistry. 1981, 256: 1113711144. 
[14] Ragsdale S W, Wood H G. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. The Journal of Biological Chemistry. 1985, 260: 39703977. 
[15] Ljungdahl L G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annual Review of Microbiology. 1986, 40: 415450. 
[16] Worden R M, Grethlein A J, Zeikus J G, et al. Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Applied Biochemistry and Biotechnology. 1989, 20/21: 687698 . 
[17] Grethlein A J, Worden R M, Jain M K, et al. Continuous production of mixed alcohols and acids from carbon monoxide. Applied Biochemistry and Biotechnology. 1990, 24/25:875884. 
[18] Grethlein A J, Worden R M, Jain M K, et al. Evidence for production of nbutanol from carbon monoxide by Butyribacterium methylotrophicum. Journal of Fermentation and Bioengineering. 1991, 72(1):5860. 
[19] Tanner R S, Miller L M, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology groupI. International Journal of Systematic Bacteriology. 1993, 43(2): 232236. 
[20] Barik S, Prieto S, Harrison S B, et al. Biological production of alchohols from coal through indirect liquifcation. Applied Biochemistry and Biotechnology. 1988, 28:363378. 
[21] Gaddy J L, Clausen E C. Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism:U.S., 612221, 1992. 
[22] Klasson K T, Ackerson M D, Clausen E C, et al. Biological conversion of coal and coalderived synthesis gas. Fuel,1993, 72 (12):16731678. 
[23] Klasson K T, Ackerson M D, Clausen E C, et al. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microbial Technology. 1992, 14: 602608. 
[24] Liou J S C,Balkwill D L,Drake G R,et al.Clostridium carboxidivorans sp. nov., a solventproducing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. . International Journal of Systematic and Evolutionary Microbiology. 2005, (55):20852091. 
[25] Rajagopalan S, Datar R P, Lewis R S. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass and Bioenergy. 2002, 23: 487493. 
[26] Datar R P, Shenkman R M, Cateni B G, et al. Fermentation of biomassgenerated producer gas to ethanol. Biotechnology and Bioengineering. 2004, 86 (5): 587594. 
[27] Abrini J, Naveau H, Nyns E. Clostridium autoethanogenum sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology. 1994, 161:345351. 
[28] Wood H G, Ljungdahl L G. Autotrophic character of acetogenic bacteria. In Variations in Autotrophic Life. Shively J M, Barton L L, Eds. SanDiego, CA: Academic Press. 1991, 201250 . 
[29] Drake H L, G?ssner A S, Daniel S L. Old acetogens, new light. Annals of the New York Academy of Sciences. 2008, 1125: 100128. 
[30] Grethlein A J, Jain M K, 1992. Bioprocessing of coalderived synthesis gas by anaerobic bacteria. Trends in Biotechnology, 10: 418423. 
[31] Diekert G B, Thauer R K. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. Journal of Bacteriology. 1978, 136:597606. 
[32] Ragsdale S W, Clark J E, Ljungdahl L G, et al. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum a nickel, ironsulfur protein. The Journal of Biological Chemistry. 1983, 258:23642369. 
[33] Diekert G, Ritter M. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Letters. 1983, 151:4144. 
[34] Xia J, Sinclair J F, Baldwin T O, et al. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: quaternary structure, stoichiometry of its SDSinduced dissociation, and characterization of the fastermigrating form. Biochemistry. 1996, 35(6):19651971. 
[35] Ragsdale S W. Life with carbon monoxide. Critical Reviews in Biochemistry and Molecular Biology. 2004, 39:165195 . 
[36] Tan X S, Bramlett M R, Lindahl P A. Effect of Zn on acetyl coenzyme a synthase: evidence for a conformational change in the a subunit during catalysis. Journal of the American Chemical Society. 2004, 126(19): 59545955. 
[37] Bramlett M R, Tan X S, Lindahl P A. Inactivation of acetylCoA synthase/carbon monoxide dehydrogenase by copper. Journal of the American Chemical Society. 2003, 125(31): 93169317. 
[38] Maynard E L, Lindahl P A. Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetylCoA synthesis in acetylCoA synthase from Clostridium thermoaceticum. Journal of the American Chemical Society. 1999, 121:92219222. 
[39] Seravalli J, Ragsdale S W. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry. 2000, 39(6):12741277. 
[40] Bredwell M D, Srivastava P, Worden R M. Reactor design issues for synthesisgas fermentations. Biotechnology Progress. 1999, 15(5): 834844. 
[41] Alonso C, Suidan M T, Sorial G A, et al. Gas treatment in tricklebed biofilters: biomass, how much is enough? . Biotechnology and Bioengineering. 1997, 54: 583594. 
[42] Bredwell M D, Worden R M. Masstransfer properties of microbubbles: Experimental studies. Biotechnology Progress. 1998, 14 (1): 3138. 
[43] Sebba F. Foams and Biliquid Foams Aphrons. Wiley: New York, 1987. 
[44] Kaster J A, Michelsen D L, Velander W H. Increased oxygen transfer in a yeast fermentation using a microbubble dispersion. Applied Biochemistry and Biotechnology. 1990, 24/25:469484. 
[45] Klasson K T, Ackerson M D, Clausen E C, et al. Bioreactors for synthesis gas fermentations. Resources, Conservation and Recycling. 1991, 5: 145165.

[1] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[2] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[3] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[4] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[5] Xin-tong CHI,Shao-ming MAO. Optimization of Bioethanol Production by Brown Algae[J]. China Biotechnology, 2017, 37(12): 111-118.
[6] WANG Jing-sheng, WANG Qiu-feng, LI Yong, LIU Yan, ZHANG Xian-chu, LI Bo, DONG Qing-shan, LIU Yue. The Application of Logistic Equation to Simulate Ethanol Fermentation in Different Initial Concentration Reducing Sugar[J]. China Biotechnology, 2017, 37(10): 81-85.
[7] GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol[J]. China Biotechnology, 2016, 36(5): 97-105.
[8] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[9] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[10] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[11] SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1[J]. China Biotechnology, 2015, 35(7): 37-44.
[12] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[13] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[14] GAO Jiao-qi, HAN Xi-tong, KONG Liang, YUAN Wen-jie, WANG Na, BAI Feng-wu. Application Progress of Kluyveromyces marxianus in the Industrial Biotechnology[J]. China Biotechnology, 2014, 34(2): 109-117.
[15] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.