Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (07): 118-126    DOI:
    
Current status and progress of microalgal biodiesel
Download: HTML   PDF(704KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Abstract Microalgae biodiesel can solve these problems currently of plants materials, such as: shortage of arable land, impact of climate change for production and to lead high crop prices and so on. Constructing "engineered microalgae" through transgenic technology, the microalgae have capacity of high growth, shorter periods of growth and several times higher oil production than terrestrial plants. Furthermore, sea water can be as its natural medium for industrial production. The advantages of microalgae biodiesel, current status and progress of researches on engineered microalgae as well as product technologies of microalgal biodiesel was introduced.

Key wordsMicroalgae;biodiesel;Photobioreactor     
Received: 07 January 2009      Published: 28 July 2009
ZTFLH:  中图分类号Q77  
Cite this article:

JIA Jin-Lan, MO Min-Xi, WANG Run-Min, LIU Feng, LI Li, HUANG Bin, QIU Guan-Zhou. Current status and progress of microalgal biodiesel. China Biotechnology, 2009, 29(07): 118-126.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I07/118

[1] 杨艳, 卢滇楠, 李春,等. 面向21世纪的生物能源. 化工进展, 2002, 21(5):299~302 Yang Y, Lu D N, Li Ch, et al. Chemical Industry and Engineering Progress, 2002, 21(5):299~302 [2] Barnwal B K, Sharma M P. Prospects of biodiesel production from vegetables oils in India. Renew Sustain Energy Rev, 2005, 9:363~378 [3] Demirbas A. Biodiesel production from vegetable oils via catalytic and noncatalytic supercritical methanol transesterification methods. Pror Energy Combust Sci, 2005, 31(5~6):466~487 [4] Meher L C, Vidya Sagar D, Naik S N. Technical aspects of biodiesel production by transesterification  a review. Renew Sustain Energy Rev, 2006, 10:248~268 [5] 吴翠红. 浅析我国生物柴油发展前景. 齐鲁石油化工, 2007, 35(1):52~27 Wu C H. Qilu Petrochemical Technology, 2007, 35(1):52~27. [6] Felizardo P, Correia M J N, Raposo I, et al. Production of biodiesel from waste frying oil. Waste Manag, 2006, 26(5):487~494 [7] Kulkarni M G, Dalai A K. Waste cooking oil  an economical source for biodiesel: a review. Ind Eng Chem Res, 2006, 45:2901~2913 [8] Song D H, Fu J J, Shi D J. Exploitation of oilbearing microalgae for biodiesel. Chinese Journal of Biotechnology, 2008, 24(3):341~348 [9] 苏敏光, 于少明, 吴克,等. 生物柴油制备方法及其质量标准现状. 包装与食品机械, 2008, 26(3):20~25 Su M G, Yu S M, Wu K et al. Packaging and Food Machinery, 2008, 26(3):20~25. [10] Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3):294~306 [11] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 2008, 54(4):621~639 [12] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 2008, 26(3):126~131 [13] Schenk P M, ThomasHall S R, Stephens E, et al. Second generation biofuels: highefficiency microalgae for biodiesel production. Bioenerg Res, 2008, 1:20~43 [14] Spolaore P, JoannisCassan C, Duran E, et al. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006, 101(2):87~96 [15] Lynn S G, Kilham S S, Kreeger D A, et al. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus. Journal of Phycology 2000, 36(3):510~522 [16] Rao A R, Dayananda C, Sarada R, et al. EVect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 2007, 98:560~564 [17] Chiu S Y, Kao C Y, Tsai M T, et al. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 2009, (100):833~838 [18] Liu Z Y, Wang G C, Zhou B C, et al. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 2008, 100(2):4717~4722 [19] Miao X l, Wu Q Y. Exploitation of biomass renewable energy sources of microalgae. Renewable Energy, 2003, 3:13~16 [20] Manuel F, Jorg P. Biodiesel:a new oildorado. Energy Policy, 2007, 35:1675~1684 [21] Walker T L, Purton S, Becker D K, et al. Microalgae as bioreactors. Plant Cell Reports, 2005, 24(11):629~641 [22] Kroth P G. Genetic transformation: a tool to study protein targeting in diatoms. Methods Mol Biol,2007, 390:257~268 [23] Remacle C, Cardol P, Coosemans N, et al. Highefficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12):4771~4776 [24] Sun Y, Yang Z Y, Gao X S, et al. Expression of foreign genes in Dunaliella by electroporation. Molecular Biotechnology, 2005, 30(3):185~192 [25] Wang C H, Wang Y Y, Su Q, et al. Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp MACC/C95, via electroporation. Biotechnology and Bioprocess Engineering, 2007, 12(2):180~183 [26] Wang T Y, Xue L X, Hou W H, et al. Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Applied Microbiology and Biotechnology, 2007, 76(3):651~657 [27] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, 281(5374):237~240 [28] Zaslavskaia L A, Lippmeier J C, Kroth P G, et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. Journal of Phycology, 2000, 36(2):379~386 [29] Poulsen N, Chesley P M, Kroger N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology, 2006, 42(5):1059~1065 [30] Riekhof W R, Sears B B, Benning C. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1(Cr). Eukaryotic Cell, 2005, 4(2):242~252 [31] Dunahay T G, Jarvis E E, Roessler P G. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol, 1995, 31:1004~1012 [32] Carman G M, Han G S. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends in Biochemical Sciences, 2006, 31(12):694~699 [33] Grima E M, Fernandez F G A, Camacho F G, et al. Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology, 1999, 70(1~3):231~247 [34] Sánchez Pérez J A, Rodríguez Porcel E M, Casas López J L,et al. Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 2006, 124:1~5 [35] Yun Y S, Lee S B, Park J M, et al. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol, 1997, 69:451~455 [36] Sawayama S, Inoue S, Dote Y, et al. CO2 fixation and oil production through microalga. Energy Convers Manag 1995, 36:729~731 [37] 刘娟妮, 胡萍, 姚领,等. 微藻培养中的光生物反应器研究进展. 食品科学, 2006, 27(12):772~777 Liu J N, Hu P, Yao L, et al. Food Science, 2006, 27(12):772~777 [38] Carvalho A P, Meireles L A, Malcata F X. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog, 2006, 22:1490~1506 [39] Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 2001, 57:287~293 [40] 刘晶璘, 张嗣良. 封闭式光生物反应器研究进展. 生物工程学报, 2000, 16(2):119~123 Liu J L, Zhang S L. Chinese Journal of Biotechnology, 2000, 16(2):119~123 [41] E Sierra F G, Aci′en J M, Fern′andez J L,et al. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 2008, 138(2008):136~147 [42] Oncel S, Sukan F V. Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis. Bioresource Technology, 2008, 99(2008):4755~4760 [43] 张栩, 戢涌骋, 周百发. 气升式藻类光生物反应用研究. 海洋科学, 2000, 24(5):56~58 Zhang X, Ji Y C, Zhou B F. Marine Sciences, 2000, 24(5):56~58 [44] Suh In Soo, Joo HyunNa, Lee ChoulGyun. A novel doublelayered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation. Journal of Biotechnology, 2006, 125(2008):540~546 [45] L′opez M C, Garc′taMalea, S′anchez E,et al. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 2006, 123(2006):329~342 [46] 吴庆, 马润宇, 蔡昭玲. 从微藻中提取多不饱和脂肪酸. 北京化工大学学报, 2004, 31(4):6~9 Wu Q, Ma R Y, Cai Z L. Journal of Beijing University of Chemical Thechnology, 2004, 31(4):6~9 [47] 缪晓玲, 吴庆余. 微藻油脂制备生物柴油的研究. 太阳能学报, 2007, 28(2):219~222 Mou X L, Wu Q Y. Acta Energiae Solaris Sinica, 2007, 28(2):219~222 [48] 陈正中, 邹立壮, 郭瑾. 生物柴油的研究现状. 化学工程师, 2007, 145(10):33~36 Chen Z Z, Zou L S, Guo J. Chemical Engineer, 2007, 145(10):33~36 [49] Carbbe Aaward. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 2001, 37(1):65~71 [50] Haas J M. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Processing Technology, 2005, 86:1087~1096 [51] Kim H J, Kang B S, Kim M J. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 2004, 93(95):315~320 [52] Shieh C J, Liao H F, Lee C C. Optimization of lipasecatalyzed biodiesel by response surface methodology. Bioresource technonoly, 2003, 88:103~106 [53] Saka S, Kundiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel Processing Technology, 2001, 80(2):225~231
No related articles found!