Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (09): 105-109    DOI: Q946.5
    
Cutinase and its Application in Textile
ZHANG Yao1, 2 ,CHEN Sheng1, 2, WU Dan1, 2 ,WU Jing1, 2,CHEN Jian1, 2
1.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2141221, China
Download: HTML   PDF(386KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The paper focus on recent research of cutinase, including the major source, the cloning and expression, as well as the fermentation of cutinase. It also elaborates the current application progress of cutinase in the following aspects, such as cotton fiber bioscouring, wool anti-felting finish, and biological modification of synthetic fibers, etc. In addition, the cutinase, as a key enzyme in promoting the textile cleaner production industry, was summaried briefly in the future textile application.



Key wordsCutinase      Cutin      Textile      Enzyme     
Received: 19 April 2010      Published: 25 August 2010
Cite this article:

ZHANG Yao, CHEN Cheng, TUN Dan, TUN Jing, CHEN Jian. Cutinase and its Application in Textile. China Biotechnology, 2010, 30(09): 105-109.

URL:

https://manu60.magtech.com.cn/biotech/Q946.5     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I09/105

[1] Holmquist M. Alpha/Betahydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci, 2000, 1(2): 209235. 
[2] Kolattukudy PE, Purdy R E, Maiti I B. Cutinases from fungi and pollen. Methods Enzymol, 1981, 71: 652664. 
[3] Mandy A M, Anne H, Wolfgang Z. Cutinase production by Fusarium oxysporum in liquid medium using central composite design. Biotechnol Lett, 2006, 28:681 685. 
[4] Pio T F, Macedo G A. Cutinase production by Fusarium oxysporum in liquid medium using central composite design. J Ind Microbiol Biotechnol, 2008, 35 (1): 5967. 
[5] Li D H, Ashby A M, Johnstone K, et al. Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. Mol PlantMicrobe Interact, 2003, 16 (6): 545552. 
[6] Sebastian J, Chandra A K, Kolattukudy P E. Discovery of a cutinaseproducing Pseudomonas sp. cohabiting with an apparently nitrogenfixing Corynebacterium sp. in the phyllosphere. J Bacteriol, 1987, 169(1): 131136. 
[7] Chen S, Tong X, Woodard R W, et al. Identification and characterization of bacterial cutinase. J Biol Chem, 2008, 283(38): 2585425862. 
[8] Dutta K, Sen S, Veeranki V. Production, characterization and applications of microbial cutinases. Process Biochemistry, 2009, 44(2): 127134. 
[9] Fett W F, Gerard H C, Moreau R A, et al. Cutinase production by Streptomyces spp. Current micro biology, 1992, 25(3): 165171. 
[10] Egmond M. Fusarium solani pisi cutinase. Biochimie, 2000, 82(11): 10151021. 
[11] Kwon M, Kim H S, Yang T H, et al. Song Highlevel expression and characterization of Fusarium solani cutinase in Pichia pastoris. Protein Expression and Purification, 2009, 68(1): 104109. 
[12] van G I, Beijersbergen A, van D H, et al. Expression and secretion of defined cutinase variants by aspergillus awamori. Appl Environ Microbiol, 1998, 64(8): 27942799. 
[13] Jacob D S. Production of Fusarium solani f.sp.pisi cutinase in Fusarium venenatum A3/5. Biotechnology Letters, 2007, 29(8): 12271232. 
[14] Belen R M, Cardoza R E, Hermosa R, et al. Cloning and characterization of the Thcut1 gene encoding a cutinase of Trichoderma harzianum T34. Curr Genet, 2008, 54(6): 301312. 
[15] Chen S, Su L Q, Billig S S, et al. Biochemical charaterization of the cutinases from Thermonbifida fusca. Journal of Molecular Catalysis B: Enzymatic, 2010, 63: 121127. 
[16] Calado C R C, Taipa M A, Cabral J M S, et al. Optimization of culture conditions and characterisa tion of cutinase produced by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2002, 31: 161170. 
[17] Calado C R C, Almeida C, Cabral J M S, et al. Development of a fedbatch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Journal of Bioscience and Bioengineering, 2003, 96: 141148. 
[18] Piod T F, Macedo G A. Optimizing the production of cutinase by Fusarium oxysporumusing response surface methodology. Enzyme Microb.Technol, 2007, 43: 613619. 
[19] Macedo G, Fraga L. Production of cutinase by Fusariumoxy sporumin solidstate fermentation using agroindustrialresidues. Biotechnol, 2007, 131: 211 241. 
[20] 毕风珍, 师俊玲, 李寅, 等. Thermobifida fuscaWSH0311产角质酶摇瓶发酵条件研究. 应用与环境生物学报, 2005, 11(5): 608610. Bi F Z, Shi J L, Li Y, et al. J Appl Environ Biol. 2005, 11(5): 608610. 
[21] 张守亮, 陈坚, 华兆哲,等. Thermobi fida fuscaWSH0311突变株合成角质酶的发酵条件. 化工进展, 2006, 25(5):533537. Zhang S L, Cheng J, Hua Z Z, et al. Chemical Industry and Engineering Progress, 2006, 25(5): 533537. 
[22] 张芙华, 陈晟, 张东旭, 等. pH两阶段控制策略发酵生产重组角质酶. 中国生物工程杂志, 2008, 28(5): 5964. Zhang F H, Chen S, Zhang D X, et al. China Biotechnology, 2008, 28(5): 5964. 
[23] 陈晟, 张芙华, 陈坚, 等. 流加发酵对重组Bacillus subtilis发酵生产角质酶的影响. 中国生物工程杂志, 2010, 30(1): 6266. Chen S, Zhang F H, Chen J, et al. China Biotechnology, 2010, 30(1): 6266. 
[24] 何刚强, 堵国成, 刘立明, 等. 嗜热子囊菌利用短链有机酸生产角质酶. 生物工程学报, 2008, 24(5): 824828. He G Q, Du G C, Liu L M, et al. Chinese Journal of Biotechnology, 2008, 24(5): 824828. 
[25] Degani O, Gepstein S. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Applied Biochemistry and Biotechnology, 2002, 102: 277 289. 
[26] Agrawal P B, Agrawal P B, Nierstrasz V A, et al. Cutinase and pectinase in cotton bioscouring: an innovative and fast bioscouring process. Biocatal Biotrans, 2008, 26(5): 412421. 
[27] Yan H J, Hua Z Z, Qian G S, et al. Effect of cutinase on the degradation of cotton seed coat in bioscouring. Biotechnol Bioprocess Eng, 2009, 14(3): 354360. 
[28] 王小花, 洪枫, 陆大年, 等. 脂肪酶在纺织工业中的应用. 毛纺科技, 2005, 33(6): 2224. Wang X H, Hong F, Lu D N, et al. Wool Textile Journal, 2005, 33(6): 2224. 
[29] Wang P, Wang Q, Fan X R, et al. Effects of cutinase on the enzymatic shrinkresist finishing of wool fabrics. Enzyme Microb Technol, 2009, 44(5): 302 308. 
[30] Norihiro N, Kazuo N, Akitomo Y. Surface modification of PET films by a combination of vinylphthalimide deposition and Arplasma irradiation. J Adhesion Sci Techno, 2004, 18(13): 1517 1528. 
[31] Silva C, Carneiro F, O’Neill A, et al. Cutinase–a new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43: 24482450. 
[32] Yoon M Y, Kellis J, Poulose A J. Enzymatic modification of polyester. AATCC Rev, 2002, 2(6):3336. 
[33] Eberl A, Heumann S, Kotekc R, et al. Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 2008, 135: 4551. 
[34] CavacoPaulo A, Morgado J, Juergen A J, et al. Interactions of cotton with CBD peptides. Enzyme Microbial Technol 1999, 25: 639643. 
[35] Araujo R, Silva C, O’Neill A, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology, 2007, 128: 849857. 
[36] Matama T, Vaz F, Gubitz G M, et al. The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnology Journal, 2006, 1: 842849. 
[37] Silva C, Araujo R, Casal M, et al. Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme and Microbial Technology, 2007, 40: 16781685. 
[38] O’Neill A, Araujo R, Casal M, et al. Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzyme and Microbial Technology, 2007, 40: 18011805. 
[39] CavacoPaulo A, Almeida L. Effects of agitation and endoglucanase pretreatment on the hydrolysis of cotton fabrics by a total cellulase. Textile Research Journal, 1996, 66:287294.
[ 40] MaldonadoValderrama J, Fainerman V, Aksenenko E, et al. Dynamics of protein adsorption at the oilwater interface: comparison with a theoretical model. Colloids Surf A: Physicochem Eng Aspects, 2005, 261: 8592. 
[41] Silva C, Matama T, Gubitz G M, et al. Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. Journal of Polymer Science, 2005, 43: 27492753.

[1] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[4] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[5] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[6] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[7] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[8] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[9] LI Zhi-gang,CHEN Bao-feng,ZHANG Zhong-hua,CHANG Jing-ling. The Physiological Mechanism for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Auxiliary Energy Substance[J]. China Biotechnology, 2020, 40(1-2): 102-108.
[10] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[11] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[12] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[13] Cheng-cheng ZHAO,Chang-po SUN,Xiao-jiao CHANG,Song-ling WU,Zhen-quan LIN. Construction and Application of Cell Lysis Systems in the Expression of Mycotoxin Degrading Enzyme in Escherichia coli[J]. China Biotechnology, 2019, 39(4): 69-77.
[14] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[15] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.