Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (4): 47-54    DOI: 10.13523/j.cb.2101006
    
Advances in Single Molecule Immunoassay
ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong(),GE Sheng-xiang
School of Public Health, Xiamen University,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases,Collaborative Innovation Centers of Biological Products,Xiamen University, Xiamen 361102, China
Download: HTML   PDF(30489KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Early diagnosis, early detection, and early treatment is an important strategy for improving the survival rate of patients. However, the current immunological reagents based on enzyme-linked immunosorbent assay and chemiluminescence are mostly limited to 10-14~10-12 mol/L, which cannot meet the needs for early diagnosis. On the contrary, single molecule detection allows to detect very low amount of biomarkers(~ 10-18 mol/ L) through limiting the immune complex into extremely small space(below nL). The results are produced by counting positive spots.The key for this technology is to create an array of small space. After decades of development, the detection range has been successfully limited to zL (10-21 L) through physical isolation,nanopores, or high-resolution microscope. For now, the SiMoA based on microarray has become the gold standard for single-molecule immunoassays. And the Quanterix’s HD-1 analyzer based on SiMoA has been applied for clinical practice, while the technology based microdroplets are mainly used for laboratory research. However, the later provide an avenue for point of care testing (POCT). Herein, this review will focus on the progress of single-molecule detection based on microarrays and microdroplets. It will provide a theoretical basis for the development of ultra-high sensitivity detection methods and promote this technology into clinical applica-tions.



Key wordsSingle molecule detection      Microarray      Microdroplets     
Received: 04 January 2021      Published: 30 April 2021
ZTFLH:  Q819  
Corresponding Authors: Ting-dong LI     E-mail: litingdong@xmu.edu.cn
Cite this article:

ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay. China Biotechnology, 2021, 41(4): 47-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101006     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I4/47

Fig.1 Production of the COP-based chip (a) The process for producing COP-based chip (b) Chip made by COP
Fig.2 Schematic mechanism of SimoA detection
Fig.3 The HD-1 analyser (a) The outlook and internal structure of HD-1 analyser (b) The real chip matched for the HD-1 analyser
Fig.4 Schematic mechanism of detection based on microdroplets
检测形式 结构基础 芯片构建材料 研究现状 检测灵敏度
(mol/L)
优势 劣势
微阵列 微井 PDMA
光纤维束 COP
HD-1 全自动化
仪器(金标准)
10-18 易于实现自动化检测,检测结果更稳定 较难实现POCT,微井数量有限,有概率造成磁珠的遗失
微液滴 油包水微液滴 PDMS
PMMA
μMD POCT
检测平台
10-18 用于POCT,造价低廉,可无限生成微液滴 芯片制作工艺尚不成熟,较难生成 fL级液滴
Table 1 The comparison between microwells and microfluidics
[1]   郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019,41(1):19-28.
[1]   Zheng R S, Sun K X, Zhang S W, et al. Report of cancer epidemiology in China, 2015. Chinese Journal of Oncology, 2019,41(1):19-28.
[2]   Srinivas P R, Kramer B S, Srivastava S. Trends in biomarker research for cancer detection. The Lancet Oncology, 2001,2(11):698-704.
doi: 10.1016/S1470-2045(01)00560-5 pmid: 11902541
[3]   Giljohann D A, Mirkin C A. Drivers of biodiagnostic development. Nature, 2009,462(7272):461-464.
pmid: 19940916
[4]   Gaster R S, Hall D A, Nielsen C H, et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nature Medicine, 2009,15(11):1327-1332.
doi: 10.1038/nm.2032 pmid: 19820717
[5]   Bobrow M N, Harris T D, Shaughnessy K J, et al. Catalyzed reporter deposition, a novel method of signal amplification application to immunoassays. Journal of Immunological Methods, 1989,125(1-2):279-285.
pmid: 2558138
[6]   Rissin D M, Kan C W, Campbell T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology, 2010,28(6):595-599.
pmid: 20495550
[7]   Cohen L, Walt D R. Single-molecule arrays for protein and nucleic acid analysis. Annual Review of Analytical Chemistry, 2017,10:345-363.
[8]   Macchia E, Manoli K, Holzer B, et al. Single-molecule detection with a millimetre-sized transistor. Nature Communications, 2018,9:3223.
[9]   Taylor A B, Zijlstra P. Single-molecule plasmon sensing: current status and future prospects. ACS Sensors, 2017,2(8):1103-1122.
[10]   Punj D, Regmi R, Devilez A, et al. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations. ACS Photonics, 2015,2(8):1099-1107.
[11]   Holzmeister P, Acuna G P, Grohmann D, et al. Breaking the concentration limit of optical single-molecule detection. Chemical Society Reviews, 2014,43(4):1014-1028.
[12]   McDonald J C, Duffy D C, Anderson J R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000,21(1):27-40.
[13]   Michael K L, Taylor L C, Schultz S L, et al. Randomly ordered addressable high-density optical sensor arrays. Analytical Chemistry, 1998,70(7):1242-1248.
pmid: 9553489
[14]   Walt D R. Fibre optic microarrays. Chemical Society Reviews, 2010,39(1):38-50.
pmid: 20023835
[15]   Shin J Y, Park J Y, Liu C Y, et al. Chemical structure and physical properties of cyclic olefin copolymers (IUPAC technical report). Pure and Applied Chemistry, 2005,77(5):801-814.
[16]   Nguyen D, Taylor D, Qian K, et al. Better shrinkage than shrinky-dinks. Lab on a Chip, 2010,10(12):1623-1626.
doi: 10.1039/c001082k pmid: 20517559
[17]   Steigert J, Haeberle S, Brenner T, et al. Rapid prototyping of microfluidic chips in COC. Journal of Micromechanics and Microengineering, 2007,17(2):333-341.
[18]   Kan C W, Rivnak A J, Campbell T G, et al. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assem-blies. Lab on a Chip, 2012,12(5):977-985.
[19]   Wilson D H, Rissin D M, Kan C W, et al. The simoa HD-1 analyzer: A novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. Journal of Laboratory Automation, 2016,21(4):533-547.
[20]   Yelleswarapu V, Buser J R, Haber M, et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS, 2019,116(10):4489-4495.
pmid: 30765530
[21]   Chong Z Z, Tan S H, Gañán-Calvo A M, et al. Active droplet generation in microfluidics. Lab on a Chip, 2016,16(1):35-58.
[22]   Zheng B, Tice J D, Ismagilov R F. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Analytical Chemistry, 2004,76(17):4977-4982.
[23]   Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004,59(15):3045-3058.
[24]   Marín A G, Campo-Cortés F, Gordillo J M. Generation of micron-sized drops and bubbles through viscous coflows. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,344(1-3):2-7.
[25]   Arayanarakool R, Shui L L, Kengen S W M, et al. Single-enzyme analysis in a droplet-based micro- and nanofluidic system. Lab on a Chip, 2013,13(10):1955-1962.
pmid: 23546540
[26]   Christensen S M, Bolinger P Y, Hatzakis N S, et al. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. Nature Nanotechnology, 2012,7(1):51-55.
pmid: 22036813
[27]   Abate A R, Weitz D A. Faster multiple emulsification with drop splitting. Lab on a Chip, 2011,11(11):1911-1915.
pmid: 21505660
[28]   Pollock N R, Banz A, Chen X H, et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay. Clinical Infectious Diseases, 2019,68(1):78-86.
[29]   Su B, Yin J M, Lin X G, et al. Quantification of SARS-CoV-2 antigen levels in the blood of patients with COVID-19. Science China Life Sciences, 2020. DOI: 10.1007/s11427-020-1830-8.
pmid: 33740187
[30]   Ogata A F, Maley A M, Wu C, et al. Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease. Clinical Chemistry, 2020,66(12):1562-1572.
[31]   Wu D L, Dinh T L, Bausk B P, et al. Long-term measurements of human inflammatory cytokines reveal complex baseline variations between individuals. The American Journal of Pathology, 2017,187(12):2620-2626.
[32]   Marín-Romero A, Robles-Remacho A, Tabraue-Chávez M, et al. A PCR-free technology to detect and quantify microRNAs directly from human plasma. The Analyst, 2018,143(23):5676-5682.
doi: 10.1039/c8an01397g pmid: 30411757
[33]   Chhatwal J P, Schultz A P, Dang Y F, et al. Plasma N-terminal tau fragment levels predict future cognitive decline and neurodegeneration in healthy elderly individuals. Nature Communications, 2020,11(1):6024.
pmid: 33247134
[34]   Thebault S, Abdoli M, Fereshtehnejad S M, et al. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Scientific Reports, 2020,10:10381.
[35]   Tarawneh R, D’Angelo G, Macy E, et al. Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Annals of Neurology, 2011,70(2):274-285.
pmid: 21823155
[36]   Mommert M, Perret M, Hockin M, et al. Type-I interferon assessment in 45 minutes using the FilmArray® PCR platform in SARS-CoV-2 and other viral infections. European Journal of Immunology, 2020. DOI: 10.1002/eji.202048978.
pmid: 33792033
[37]   Casaletto K B, Elahi F M, Fitch R, et al. A comparison of biofluid cytokine markers across platform technologies: Correspondence or divergence? Cytokine, 2018,111:481-489.
pmid: 29908923
[38]   Trouillet-Assant S, Viel S, Gaymard A, et al. Type I IFN immunoprofiling in COVID-19 pa-tients. Journal of Allergy and Clinical Immunology, 2020,146(1):206-208, e2.
[39]   Ben Salah E, Dorgham K, Lesénéchal M, et al. Assessment of an ultra-sensitive IFNγ immunoassay prototype for latent tuberculosis diagnosis. European Cytokine Network, 2018,29(4):136-145.
[40]   Wilson D H, Hanlon D W, Provuncher G K, et al. Fifth-generation digital immunoassay for prostate-specific antigen by single molecule array technology. Clinical Chemistry, 2011,57(12):1712-1721.
doi: 10.1373/clinchem.2011.169540 pmid: 21998342
[41]   Duffy D C, Rissin D M, Kan C W, et al. Detection of prostate specific antigen (PSA) in the serum of radical prostatectomy patients at femtogram per milliliter levels using digital ELISA (AccuPSATM) based on single molecule arrays (SiMoA). [2021-01-20]. https://www.quanterix.com/publications-posters/development-accupsatm-novel-digital-immunoassay-subfemtomolar.
[42]   Wilson D H, Duffy D C, Rissin D M, et al. Development of (AccuPSATM), a novel digital immunoassay for sub-femtomolar measurement of PSA in post radical prostatectomy pa-tients. [2021-01-20]. https://www.quanterix.com/publications-posters/development-accupsatm-novel-digital-immunoassay-subfemtomolar
[43]   Shi Y, Gao W, Lytle N K, et al. Targeting LIF-mediated paracrine interaction for pancreatic can cer. therapy and monitoring. Nature, 2019,569(7754):131-135.
pmid: 30996350
[44]   Yoh K E, Lowe C J, Mahajan S, et al. Enrichment of circulating tumor-derived extracellular vesicles from human plasma. Journal of Immunological Methods, 2021,490:112936.
pmid: 33242493
[45]   Cohen L, Hartman M R, Amardey-Wellington A, et al. Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Research, 2017,45(14):e137.
doi: 10.1093/nar/gkx542 pmid: 28637221
[46]   Li Z H, Hayman R B, Walt D R. Detection of single-molecule DNA hybridization using en-zymatic amplification in an array of femtoliter-sized reaction vessels. Journal of the Ameri-can Chemical Society, 2008,130(38):12622-12623.
[47]   Schubert S M, Walter S R, Manesse M, et al. Protein counting in single cancer cells. Analytical Chemistry, 2016,88(5):2952-2957.
[48]   Saxena A, Dagur P K, Desai A, et al. Ultrasensitive quantification of cytokine proteins in single lymphocytes from human blood following ex-vivo stimulation. Frontiers in Immunology, 2018,9:2462.
pmid: 30405640
[49]   Wang T J, Wollert K C, Larson M G, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the framingham heart study. Circulation, 2012,126(13):1596-1604.
[1] Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG. Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation[J]. China Biotechnology, 2018, 38(5): 1-9.
[2] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[3] JIA Dong, ZHANG Bin, MA Rui-yan, TANG Gui-gang, ZHAO Jie, WANG Wen-hua, ZHOU Lin. Determination of the Structure of m3G Cap RNA by Co-immunoprecipitation and Microarray[J]. China Biotechnology, 2014, 34(2): 65-70.
[4] DENG Han-chao, YIN Chang-cheng, LIU Guo-zhen, LIN Jian-rong, DENG Ping-jian. Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms[J]. China Biotechnology, 2011, 31(01): 86-95.
[5] GAO Xin, WANG Jing-Lin. The Application of Gene Microarray in Detecting Pathogenic Bacteria[J]. China Biotechnology, 2010, 30(02): 100-104.
[6] YOU Yuan-Hai, CENG Xun, GUO Wei, YIN Yan, ZHANG Mao-Dun, ZHANG Jian-Zhong. Development of a Multiplex PCRMicroarray Method for Detection of Important Enteropathogen[J]. China Biotechnology, 2009, 29(12): 79-84.
[7] YOU Yuan-Hai, ZHANG Jian-Zhong. Data Mining from Microarray Gene Expression Profile[J]. China Biotechnology, 2009, 29(10): 87-91.
[8] Bi-Cheng Liu Zu-Hong Lu. Construction of Antibody Microarray Based On Sandwich Immunoassay[J]. China Biotechnology, 2008, 28(9): 83-88.
[9] . Data Mining Procedures Using GEO(Gene Expression Omnibus)[J]. China Biotechnology, 2007, 27(8): 96-103.