Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 49-58    DOI: 10.13523/j.cb.20171208
Orginal Article     
Heterologous Expression, Mutation, Optimizing the Expression Condition and Characterization of Lysostaphin in Kluyveromyces lactis
Xi WANG1,Guang-de ZHANG1,Xi-ming CHEN2,Tong-liang PU1*()
1 School of Life Sciences,LanZhou University, Lanzhou 730000, China
2 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Download: HTML   PDF(1121KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

According to the sequence of lysostaphin gene from Staphylococcus simulans and codon bias of Kluyveromyces lactis, the PCR primers were designed to amplify the fragment of lysostaphin gene. The fragment was inserted in pKLAC1, and transformed to K. lactis GG799. The K. lactis GG799/pKLAC1- Lys was cultivated to express Lys. A high expression strain (mu4#) were abtained by using powerful mutagen (N-methy1-N-nitro-N-nitrosoguanidine,NTG) on the recombinant and optimized the expression condition .The fermentation broth of mu4# was purified by Ni-NTA agarose and the enzyme characterization was studied. The result showed that the activity of Lys was approximately 5.2 times (8 000U/L) higher in the mutation. The optimal inoculum dose of the mutant (mu4#) was 40g/L; Galactose and NH4NO3 (20g/L) were added in every 24 hours, Lys exhibited optimal expression at pH 7.0~7.5; Furthermore, the Lys enzyme optimal reaction performed at pH 7.0~8.0 and temperature at 37℃. The recombinant Lys was stable below 40℃ and pH between 3.0 and 6.0. Sr2+ stimulated its activity whereas Ba2+、Ca2+、Zn2+、Cu2+、Mn2+、Mg2+ inhibited the activities. This research accomplished Lys recombinant expression, yield improvement by chemical mutagenesis in K. lactis and characterization of lysostaphin. These research results provide profound guiding significance for the large-scale production and application of recombinant lysostaphin.



Key wordsKluyveromyces lactis      Lysostaphin      Recombinant      Mutation     
Received: 12 June 2017      Published: 16 December 2017
ZTFLH:  Q819  
Cite this article:

Xi WANG,Guang-de ZHANG,Xi-ming CHEN,Tong-liang PU. Heterologous Expression, Mutation, Optimizing the Expression Condition and Characterization of Lysostaphin in Kluyveromyces lactis. China Biotechnology, 2017, 37(12): 49-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171208     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/49

ddH2O10 × Buffer
(含Mg2+)
dNTPs
(2.5mmol/L)
P1P2Taq
37.555110.5
Table 1 PCR reaction system
Fig.1 Agarose gel electrophoresis of Lys
M:DNA marker; 1: PCR product of Lys
Fig.2 Structure of expression vector pKLAC1-Lys
Fig.3 The enzyme identification of pKLAC1-Lys
M: DNA marker; 1:Expression vector pKLAC1-Lys; 2: Expression vector pKLAC1-Lys digested by XhoⅠand Kpn
Fig.4 Single enzyme digestion of pKLAC1-Lys
M: DNA marker; 1:Expression vector pKLAC1-Lys digested by Sac
Fig.5 The Lys enzyme activity of K. lactis GG799/pKLAC1- Lys 8# during the induction by the galactose
Fig.6 The Lys enzyme activity of mu4# during the induction by the galactose
Fig.7 The growth curve of mu4#
Fig.8 Different initial inoculum dosage of mu4# on Lys activity
Fig.9 Galactose addition of mu4# on Lys activity at different times
a:The addition of galactose at the final concentration of 20g/L in 24h; b: The addition of galactose at the final concentration of 20 g/L in 24h and 48h respectively; c: The addition of galactose at the final concentration of 20 g/L in 24h、48h and 72h respectively; d: The addition of galactose at the final concentration of 20 g/L in 24h、48h、72h and 96h respectivel
Fig.10 Nitrogen source addition of mu4# on Lys activity at different times
a:The addition of NH4NO3 at the final concentration of 20g/L in 24h; b: The addition of NH4NO3 at the final concentration of 20g/L in 24h and 48h respectively; c: The addition of NH4NO3 at the final concentration of 20 g/L in 24h、48h and 72h respectively; d: The addition of NH4NO3 at the final concentration of 20 g/L in 24h, 48h, 72h and 96h respectively
Fig.11 The effect of different pH on mu4# Lys activity
Fig.12 SDS-PAGE analysis of mu4# from fermentation broth
Fig.13 The optimum reaction pH of Lys
Fig.14 pH stability of Lys
Fig.15 The optimum reaction temperature of Lys
Fig.16 The thermostability of Lys
Fig.17 The Effect of different divalent mental ions on Lys enzymes activity
[1]   Schindler C A,Schuhardt V T.Lysostaphin: A new bacteriolytic agent fos the Staphylococcus. Proc Natl Acad Sci USA,1964,51(3):414-421.
doi: 10.1073/pnas.51.3.414
[2]   Szweda P, Schielmann M, Kotlowski R, et al.Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol , 2012, 96(5):1157-1174.
doi: 10.1007/s00253-012-4484-3 pmid: 23076591
[3]   Szweda P, Gorczyca G, Filipkowski P, et al.Eficient production of Staphylococcus simulans lysostaphin in benchtop bioreactor by recombinant Escherichia coli. Preparative Biochemistry and Biotechnology,2014,44(4) : 370-381.
doi: 10.1080/10826068.2013.829499 pmid: 24320237
[4]   Farhangnia L, Ghaznavi-Rad E, Mollaee N, et al.Cloning, expression, and purification of recombinant lysostaphin from Staphylococcus simulans. Jundishapur J Microbiol,2014,7(5): e10009.
[5]   Zhao H, Blazanovic K, Choi Y, et al.Gene and protein sequence optimization for high-level production of fully active and a glycosylated lysostaphin in Pichia pastoris. Applied and Environmental Microbiology, 2014, 80(9): 2746-2753.
doi: 10.1128/AEM.03914-13 pmid: 3993296
[6]   Schotte P, Dewerte I, Groeve M D, et al.Pichia pastoris MutS strains are prone to misincorporation of O-methyl-l-homoserine at methionine residues when methanol is used as the sole carbon source. Microbial Cell Factories, 2016,15(1):1-9.
doi: 10.1186/s12934-015-0402-6 pmid: 4700567
[7]   杨梅,温真, 林丽玉,等. 毕赤酵母蛋白表达系统研究进展. 生物技术通报, 2011,4(27):46-51.
[7]   Yang M,Wen Z, Lin L Y, et al.Advances of expression system of Pichia pastoris protein. Biotechnology Bulletin, 2011,4(27):46-51.
[8]   傅小蒙,孔令聪,裴志花,等. 毕赤酵母表达系统优化策略概述.中国生物工程杂志,2015,35(10):86-90.
doi: 10.13523/j.cb.20151013
[8]   Fu X M,Kong L C,Pei Z H, et al.Advance in the research of antimicrobial peptides gene expression in Pichia pastor. China Biotechnology, 2015,35(10):86-90.
doi: 10.13523/j.cb.20151013
[9]   黄雪月,张梁,李赢,等. 黑曲霉阿魏酸酯酶在毕赤酵母中的组成型表达. 微生物学通报, 2017, 44(1):68-78.
doi: 10.13344/j.microbiol.china.160018
[9]   Huang X Y, Zhang L, Li Y, et al.Constitutive expression of feruloyl esterase from A Spergillus niger in Pichia pastoris.Microbiol China, 2017, 44(1):68-78.
doi: 10.13344/j.microbiol.china.160018
[10]   肖超, 张梁, 李颜颜,等. 蜡样芽胞杆菌磷脂酶C在乳酸克鲁维酵母中重组表达、纯化及酶学性质分析. 微生物学报, 2017,57(1):87-96.
[10]   Xiao C, Zhang L,Li Y Y, et al.Heterologous expression, purification and characterization of phospholipase C from Bacillus cereus in Kluyveromyces lactis. Acta Microbiologica Sinica, 2017,57(1):87-96.
[11]   van Ooyen A J, Dekker P, Huang M, et al. Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Research,2006, 6(3): 381-392.
doi: 10.1111/j.1567-1364.2006.00049.x pmid: 16630278
[12]   van den Berg J A, van den Laken K J, van Ooyen A J J, et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology, 1990, 8(2): 135-139.
doi: 10.1038/nbt0290-135 pmid: 1366557
[13]   Swinkels B W, van Ooyen A J, Bonekamp F J. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek, 1993, 64(2):187-201.
doi: 10.1007/BF00873027 pmid: 8092859
[14]   He X Z, Zhao D F, Huang H F, et al. Screening of Propionibacterium shermanii strains with high production antibacterial metabolites by NTG mutation. Journal of Anhui Agricultural Sciences, 2016,44(2):18-20.
[15]   郭玮婷, 张慧, 查东风,等. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法.中国生物工程杂志, 2015, 35(8):83-89.
doi: 10.13523/j.cb.20150812
[15]   Guo W T, Zhang H, Zha D F, et al.A rapid method of screening for thermostable transglutaminase from Streptomyces mobaraensis. China Biotechnology, 2015, 35(8):83-89.
doi: 10.13523/j.cb.20150812
[16]   袁伟, 柯涛, 杜敏华,等.牛凝乳酶原基因的合成及其在乳酸克鲁维酵母中的表达. 生物工程学报, 2010, 26(9):1281-1286.
[16]   Yuan W, Ke T, Du M H, et al.Gene synthesis of the bovine prochymosin gene and high-level expression in Kluyvermyces lactis. Chinese Journal of Biotechnology, 2010, 26(9):1281-1286.
[17]   杨信怡,游雪甫,蒋建东.溶葡球菌酶研究进展.中国生化药物杂志, 2005, 26(6):372-374.
[17]   Yang X Y,YouX F,Jiang J D.Advances in lysostaphin research. Chinese Journal of Biochemical Pharmaueuties, 2005, 26(6):372-374.
[18]   王永, 刘沐荣, 万海同,等. 聚乙二醇修饰重组溶葡球菌酶的初步研究.中国生物工程杂志, 2013, 33(6):12-17.
[18]   Wang Y, Liu M R,Wan H T, et al.Chemical modification of lysostaphin with activated polyethlene glycol. China Biotechnology, 2013, 33(6):12-17.
[19]   Hoernig K J, Donovan D M, Pithua P, et al.Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle. American Dairy Science Association, 2016, 99( 6):4638-4646.
doi: 10.3168/jds.2015-10783 pmid: 27040789
[20]   袁怀兵. 重组溶葡萄球菌酶对奶牛子宫内膜炎的疗效研究.当代畜禽养殖业,2013,12(19):6-7.
doi: 10.3969/j.issn.1005-5959.2013.12.004
[20]   Yuan H B.The study of recombinant lysostaphin on treatment trial of endometritis in dairy cattle. Modern Animal Husbandry, 2013,12(19):6-7.
doi: 10.3969/j.issn.1005-5959.2013.12.004
[21]   陆锦春,陈华鹏,马怀彦,等. 重组溶葡萄球菌酶在患子宫内膜炎奶牛体内的药代动力学与残留研究.疾病防治,2012,2(19):40-44.
doi: 10.3969/j.issn.1671-4393.2012.02.010
[21]   Lu J C,Chen H P,Ma H Y, et al.Pharmacokinetics and residue of recombinant lysostaphin in dairy cows with endometritis. Disease Prevention, 2012,2(19):40-44.
doi: 10.3969/j.issn.1671-4393.2012.02.010
[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[3] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[4] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[5] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[6] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[7] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[8] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[9] WANG Qian,CHEN Su-ning. The Genetics of Mixed-phenotype Acute Leukemia[J]. China Biotechnology, 2019, 39(9): 91-97.
[10] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[11] WANG Zhao-guan,WU Yang,QI Hao. Research Progress in Synthetic Diverse Mutant Libraries[J]. China Biotechnology, 2019, 39(11): 113-122.
[12] ZHANG Wen-yu,WEI Dong-sheng,QIAN Jiang-chao. Effects of Co-expression of PDI1, MDH1 and HAC1 Gene on Secretory Expression of Recombinant Glucose Oxidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 24-33.
[13] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[14] Ya-nan YANG,Chao SUN,Hao-lin CUI,Xin ZHAO. Effect of Mutation of M145F / F146M on the Photocycle of Photoreceptors Bacteriorhodopsin and Archaerhodopsin 4[J]. China Biotechnology, 2019, 39(1): 21-30.
[15] Hong-yuan CHEN,Hong-yan CHEN,Chun QIAO,Jian-yong LI,Da-ru LU. The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia[J]. China Biotechnology, 2018, 38(9): 35-40.