Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (11): 59-73    DOI: 10.13523/j.cb.20171109
    
Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress
ZHANG Li-li1, XU Bi-yu1, LIU Ju-hua1, JIA Cai-hong1, ZHANG Jian-bin1, JIN Zhi-qiang1,2
1. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China;
2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences/Hainan Provincial Key Laboratory for Genetics and Breeding of Banana, Haikou 570102, China
Download: HTML   PDF(4003KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Drought is the most important environmental stress. MaASR1 gene of banana plays an important role in plant responding to stress. In order to further study the molecular mechanism of drought resistance for over expressing MaASR1 gene in Arabidopsis thaliana. DNA microarray was used to broad-spectrum screening the differentially expressed genes under natural and drought treatment in wild-type Arabidopsis thaliana and transgenic lines. The results of the DNA microarray were analyzed by bioinformatics and RT-PCR verification of the related genes. The results showed that when the wild-type Arabidopsis thaliana and transgenic lines were all without any treatment, there was a total of 747 differentially expressed genes, including 559 up-regulated genes and 188 down-regulated genes. And when the wild-type Arabidopsis thaliana and transgenic lines were all drought-treated, there was a total of 653 differentially expressed genes, including 256 up-regulated genes and 397 down-regulated genes. MaASR1 gene can increase the drought resistance of Arabidopsis thaliana by affecting the expression of hormone, photosynthesis, zinc finger protein and DREB2A which involved in the ABA-independent pathway. And to lay the foundation for the molecular mechanism of MaASR1 gene as a transcription factor to improve plant drought resistance.

Key wordsMaASR1 gene      Drought stress      DNA microarray      Bioinformatics      Real-time quantitative PCR     
Received: 14 August 2017      Published: 15 November 2017
ZTFLH:  Q789  
Cite this article:

ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress. China Biotechnology, 2017, 37(11): 59-73.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171109     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I11/59

[1]   Shao H B, Chu L Y, Jaleel C A, et al. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol, 2009, 29(2):131-151.
[2]   Ramsay G. DNA chips:State-of-the-art. Nat Biotechnol, 1998, 16(1):40-44.
[3]   Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31(3):279-292.
[4]   Kreps J A, Wu Y J, Chang H S, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol, 2002, 130(4):2129-2141.
[5]   Brosche M, Vinocur B, Alatalo E R, et al. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol, 2005, 6(12):R101.
[6]   Street N R, Skogstrom O, Sjodin A, et al. The genetics and genomics of the drought response in Populus. Plant J, 2006, 48(3):321-341.
[7]   Wang H G, Zhang H L, Gao F H, et al. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet, 2007, 115(8):1109-1126.
[8]   Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, et al. Analysis of gene expression and physiological responses in three mexican maize landraces under drought stress and recovery irrigation. PLoS One, 2009, 4(10):e7531.
[9]   Wilkins O, Waldron L, Nahal H, et al. Genotype and time of day shape the Populus drought response. Plant J, 2009, 60(4):703-715.
[10]   Berta M, Giovannelli A, Sebastiani F, et al. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biology, 2010, 12(2):341-354.
[11]   Ji S J, Lu Y C, Feng J X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res, 2003, 31(10):2534-2543.
[12]   Kawaguchi R, Girke T, Bray E A, et al. Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J, 2004, 38(5):823-839.
[13]   Zhou J L, Wang X F, Jiao Y L, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol, 2007, 63(5):591-608.
[14]   Aprile A, Mastrangelo A M, De Leonardis A M, et al. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. Bmc Genomics, 2009, 10:279.
[15]   Cohen D, Bogeat-Triboulot M B, Tisserant E, et al. Comparative transcriptomics of drought responses in Populus:a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. Bmc Genomics, 2010, 11:630.
[16]   Gong P J, Zhang J H, Li H X, et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot, 2010, 61(13):3563-3575.
[17]   Mittler R, Blumwald E. Genetic engineering for modern agriculture:challenges and perspectives. Annual Review of Plant Biology, 2010, 61:443-462.
[18]   王园. 香蕉ASR基因抗逆功能的研究. 海南:海南大学, 2010. Wang Y. Study of Function of MaASR1 Tolerance to Drought and Salt Resistance. Hainan:Hainan University, 2010.
[19]   苗红霞, 王园, 徐碧玉, 等. 香蕉MaASR1 基因的抗干旱作用. 植物学报, 2014, 49(5):548-559. Miao H X, Wang Y, Xu B Y, et al. The role of banana MaASR1 in drought stress tolerance. Chinese Bulletin of Botany, 2014, 49(5):548-559.
[20]   Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58(2):221-227.
[21]   姚庆群, 谢贵水. 干旱胁迫下光合作用的气孔与非气孔限制. 热带农业科学, 2005, 25(4):80-85. Yao Q Q, Xie G S. The photosynthetic stomatal and nonstomatal limitation under drought stress. Chinese Journal of Tropical Agriculture, 2005, 25(4):80-85.
[22]   Earl H J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ Exp Bot, 2002, 48(3):237-246.
[23]   向勇. 水稻抗逆境相关基因的分离和功能分析. 武汉:华中农业大学, 2008. Xiang Y. Isolation and Functional Characterization of Rice Stress-related Genes. Wuhan:Huazhong Agricultural University, 2008.
[24]   Kalifa Y, Gilad A, Konrad Z, et al. The water-and salt-stress-regulated Asr1(abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J, 2004, 381:373-378.
[25]   刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45(14):1465-1474. Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors. Chinese Science Bulletin, 2000, 45(14):1465-1474.
[26]   Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136(1):2734-2746.
[27]   郭英慧. 棉花CCCH型锌指蛋白基因GhZEP1的分离、功能鉴定及其作用机制的研究. 泰安:山东农业大学, 2007. Guo Y H. Isolation and Function Identification of a Novel CCCH-type Zinc Finger Protein Gene GhZFP1 in Cotton. Taian:Shandong Agricultural University, 2007.
[28]   吴学闯, 曹新有, 陈明, 等. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析. 植物遗传资源学报, 2010, 11(3):343-348. Wu X C, 2, Cao X Y, Chen M, et al. Isolation and expression pattern assay of a C3HC4-type RING zinc finger protein gene GmRZFP1 in Glycinemax (L.). Journal of Plant Genetic Resources, 2010, 11(3):343-348.
[29]   Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5):1292-1309.
[1] FU Li-wen, ZHANG Yu, YI Han, LI Xue, ZHU Nai-shuo. Establishment and Application of Multiplex Fluorescent Real-time PCR for Detecting Six Kinds of Animal Derived Materials[J]. China Biotechnology, 2017, 37(9): 48-59.
[2] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[3] HE Shi-bao, YANG Cheng-fei, SHANG Sha, WANG Ling-yan, TANG Wen-chao, ZHU Yong. Cloning and Expression Analysis of Juvenile Hormone Binding Protein Gene Bmtol in Silkworm,Bombyx mori[J]. China Biotechnology, 2017, 37(10): 16-25.
[4] CHEN Li-na, TENG Mu-zhou, LU Yan-fang, ZHENG Wen-ling, MA Wen-li. miR-335 Expression in Tumor Tissues and Bioinformatic Analysis of Predicted Target Genes[J]. China Biotechnology, 2016, 36(3): 23-30.
[5] NIE Li-zhen, YU Xiao-xia, LI Guo-jing, SUN Jie, JIANG Chao, YU Zhuo. Study on Transgenic Potato Contained AtCDPK1 Gene Drived by Rd29A Promoter[J]. China Biotechnology, 2015, 35(11): 13-22.
[6] CHEN Mo, YU Li-jie, JIN Xiao-xia, ZHU Hong, FU Chang. The Progress on the Ubiquitin/26S Proteasome Pathway in Plants[J]. China Biotechnology, 2014, 34(4): 118-126.
[7] XIE Chun-fang, LI Yu-feng, LIU Da-ling, YAO Dong-sheng. The Stability Reconstruction of β-mannanase with N-glycosylation Modification[J]. China Biotechnology, 2013, 33(12): 79-85.
[8] SHEN Jian, ZHANG Yue, PAN Qiu-hui, SUN Fen-yong. Bioinformatics Analysis and Prediction of miR-17-92 Cluster Mediated Regulatory Network[J]. China Biotechnology, 2012, 32(03): 69-75.
[9] AI Rui-ting, WANG De-ping. Analysis of Bioinformatics & Computational Biology Topics in "Eleventh Five-Year Plan" National High Technology Research and Development Program[J]. China Biotechnology, 2011, 31(12): 126-132.
[10] E Guang-xin, LIU Di, ZHANG Dong-jie, CUI Yu. Cloning, Expression and Polymorphism Analysis of Porcine SRPK3 Gene[J]. China Biotechnology, 2011, 31(03): 46-54.
[11] HUANG Dun-Li, LIU Ta-Bei, WANG Gui-Hua, LI Xian-Yong. cDNA Cloning, Bioinformatics Analysis and Construction of  Overexpression Vector of High-chlorophyll Rice Gene DET1[J]. China Biotechnology, 2010, 30(04): 60-64.
[12] LIAO Bing, TUN Ning, HAN Feng-Dong, LIN Xiu-Kun. Cloning and bioinformatics analysis of Fgf9, a novel gene related to sex determination in cow[J]. China Biotechnology, 2009, 29(08): 45-50.
[13] YI Le-Fei- Wang-Ping- Zhou-Xiang-Gong- Liu-Chu-Wu. cDNA cloning and bioinformatic analysis of SAMS gene from porphyra yezoensis[J]. China Biotechnology, 2009, 29(07): 43-49.
[14] Zhang Yu-Liang. Cloning and Bioinformatics Analysis of PmNHX1 gene fromXinjiang Halophyte Plantago maritima[J]. China Biotechnology, 2009, 29(01): 27-33.
[15] . Prediction and Prokaryotic Expression of the Mutual Epitope from all Plasmid-mediatedAmpC β-lactamases[J]. China Biotechnology, 2008, 28(9): 32-38.