Please wait a minute...


China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (11): 19-27    DOI: 10.13523/j.cb.20171104
Key Genes Involved in Fatty Acids Biosynthesis in Insects
ZHENG Tian-xiang1,3, QIAN Yu-nong2,3, ZHANG Da-yu2,3
1. School of Forestry and Biotechnology, Zhejiang A & F University, Linan 311300, China;
2. College of Agricultural and Food Science, Zhejiang A & F University, Linan 311300, China;
3. Collaborative Innovation Center of Green Pesticide, Zhejiang Province, Zhejiang A & F University, Linan 311300, China
Download:   PDF(509KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Fatty acids play an important role in growth, development,reproduction and information exchange in insects. The research progress of Acetyl-coenzyme A carboxylase gene (ACC), fatty acid synthase gene (FAS), elongase of very long chain fatty acid gene (ELO), fatty acyl-CoA reductase gene (FAR) and desaturase gene (desat) is summarized.

Key wordsInsect      Fatty acids biosynthesis pathway      ELO      FAR      ACC      FAS      desat     
Received: 18 September 2017      Published: 15 November 2017
ZTFLH:  Q78  
Cite this article:

ZHENG Tian-xiang, QIAN Yu-nong, ZHANG Da-yu. Key Genes Involved in Fatty Acids Biosynthesis in Insects. China Biotechnology, 2017, 37(11): 19-27.

URL:     OR

[1]   Sassa T,Kihara A. Metabolism of very long-chain fatty acids:genes and pathophysiology. Biomolecules and Therapeutics,2014, 22(2):83-92.
[2]   Juárez M. Fatty acyl-CoA Elongation in Blatella germanica integumental microsomes. Archives of Insect Biochemistry and Physiology,2004,56(4):170-178.
[3]   Chertemps T,Duportets L,Labeur C,et al. A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America,2007,104(11):4273-4278.
[4]   Teerawanichpan P,Robertson A J,Xiao Q. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera)involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochemistry and Molecular Biology,2010, 40(9):641-649.
[5]   Cuvillier O. Sphingosine in apoptosis signaling. Biochimica Et Biophysica Acta,2003,1585(2-3):153-162.
[6]   Hannun Y A, Obeid L M. Ceramide in the eukaryotic stress response. Trends in Cell Bioloy,2000,10(2):73-80.
[7]   Hannun Y A,Obeid L M. The Ceramide-centric universe of lipid-mediated cell regulation:stress encounters of the lipid kind. Journal of Biolgical Chemistry,2002, 277(29):25847-25850.
[8]   易杰群,邹杰文,张古忍.昆虫脂肪酸及其脱饱和酶与耐寒性的关系概述. 环境昆虫学报,2015,37(1):155-162. Yi J Q,Zou J W,Zhang G R. The relationship between the fatty acids and those desaturases and the cold tolerance in the insects.Journal of Environmental Entomology,2015,37(1):155-162.
[9]   Lehrke M,Pascual G,Glass C K,et al. Gaining weight:the keystone symposium on PPAR and LXR.Genes and Development,2005,19(15):1737-1742.
[10]   Iwanaga T,Tsutsumi R,Noritake J,et al.Dynamic protein palmitoylation in cellular signaling.Progress Lipid Research,2009,48(3-4):117-127.
[11]   Choi-Rhee E,Cronan JE. The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase.Journal of Biological Chemistry,2003, 278(33):30806-30812.
[12]   Nikolau B J,Ohlrogge J B,Wurtele E S. Plant biotin-containing carboxylases. Archives Biochemistry and Biophysics,2003,414(2):211-222.
[13]   Parvy J-P,Napal L,Rubin T,et al. Drosophila melanogaster acetyl-CoA-Carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genetics,2012,8(8):e1002925.
[14]   Tong L. Acetyl-coenzyme A carboxylase:crucial metabolic enzyme and attractive target for drug discovery. Cellular and Molecular Life Science Cmls,2005,62(16):1784-1803.
[15]   Waldrop G L,Holden H M,St Maurice M. The enzymes of biotin dependent CO2 metabolism:what structures reveal about their reaction mechanisms.Protein Science,2012,21(11):1597-1619.
[16]   Lümmen P,Khajehali J,Luther K,et al. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction.Insect Biochemistry and Molecular Biology,2014, 55:1-8.
[17]   Baker K D,Thummel C S. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila.Cell Metabolism,2007, 6(4):257-266.
[18]   Gutierrez E,Wiggins D,Fielding B,et al. Specialized hepatocyte like cells regulate Drosophila lipid metabolism. Nature,2007,445(7125):275-280.
[19]   Sieber M H,Thummel C S. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metabolism,2009,10(6):481-490.
[20]   Qatanani M,Lazar M A. Mechanisms of obesity-associated insulin resistance:many choices on the menu. Genes and Development,2007,21(12):1443-1455.
[21]   Agius L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochemical Journal,2008,414(1):1-18.
[22]   Alabaster A,Isoe J,Zhou G,et al. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti. Insect Biochemistry and Molecular Biology,2011,41(12):946-955.
[23]   Abu-Elheiga L,Matzuk M M,Kordari P,et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal.Proceedings of the National Academy of Sciences of the United States of America,2005,102(34):12011-12016.
[24]   Urbanski J M,Benoit J B,Michaud M R,et al. The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus.Proceedings of the Royal Society B-Biological Sciences,2010,277(1694):2683-2692.
[25]   Zhang Y X,Ge L Q,Jiang Y P,et al. RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens. Scientific Reports,2015,5:15360.
[26]   Wheeler W M.Concerning the "blood-tissue" of the insecta. Psyche:A Journal of Entomology,2008,6(193):233-236,253-258.
[27]   Hoffmann A A,Harshman L G. Desiccation and starvation resistance in Drosophila:patterns of variation at the species, population and intrapopulation levels. Heredity,1999,83(6):637-643.
[28]   Jakobsson A,Westerberg R,Jacobsson A. Fatty acid elongases in mammals:Their regulation and roles in metabolism. Progress in Lipid Research,2006,45(3):237-249.
[29]   Finzel K, Lee D J, Burkart M D. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem,2015,16(4):528-547.
[30]   Chintapalli V R,Wang J,Dow J A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease.Nature Genetics,2007,39(6):715-720.
[31]   Li L,Jiang Y P,Liu Z Y,et al. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression. Journal of Proteomics,2016,130:140-149.
[32]   Robich R M,Denlinger D L. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proceedings of the National Academy of Sciences of the United States of America,2005,102(44):15912-15917.
[33]   Zhou G,Miesfeld R L.Energy metabolism during diapause in Culex pipiens mosquitoes.Journal of Insect Physiology,2009,55(1):40-46.
[34]   Sim C,Denlinger D L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipens.Physiological Genomics,2009,39(3):202-209.
[35]   Liu W,Li Y,Zhu F,et al. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene tolerant gene in the female Colaphellus bowringi.Insect Biochemistry and Molecular Biology,2016,74:50-60.
[36]   Tan Q Q,Liu W,Zhu F,et al. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Scientific Reports,2017,7:40509.
[37]   Leonard A E,Pereira S L,Sprecher H,et al. Elongation of long-chain fatty acids. Progress in Lipid Research,2004,43(1):36-54.
[38]   Szafer-Glusman E,Giansanti M G,Nishihama R,et al. A role for very-long-chain fatty acids in furrow ingression during cytokinesis in Drosophila spermatocytes.Current Biology,2008,18(18):1426-1431.
[39]   Ng W C,Chin J S,Tan K J,et al. The fatty acid elongase Bond is essential for Drosophila sex pheromone synthesis and male fertility. Nature Communications,2015,6:8263.
[40]   Jung A,Hollmann M,Schäfer M A. The fatty acid elongase NOA is necessary for viability and has a somatic role in Drosophila sperm. Journal of Cell Science,2007,120(16):2924-2934.
[41]   Chertemps T,Duportets L,Labeur C,et al. A new elongase selectively expressed in Drosophila male reproductive system. Biochemical and Biophysical Research Communications,2005, 333(4):1066-1072.
[42]   Falcón T,Ferreira-Caliman J F,Franco Nunes F M,et al. Exoskeleton formation in Apis mellifera:Cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. Insect Biochemistry and Molecular Biology,2014,50(11):68-81.
[43]   Zheng T X,Li H S,Han N,et al. Functional characterization of two elongases of very long-chain fatty acid from Tenebrio molitor L. (Coleoptera:Tenebrionidae). Scientific Reports,2017,7:10990.
[44]   Haritos V S,Horne I,Damcevski K,et al. Unexpected functional diversity in the fatty acid desaturases of the flour beetle Tribolium castaneum and identification of key residues determining activity. Insect Biochemistry and Molecular Biology,2014,51(7):62-70.
[45]   Sperling P,Ternes P,Zank T K,et al. The evolution of desaturases. Prostaglandins Leukotrienes and Essential Fatty Acids,2003,68(2):73-95.
[46]   Wicker-Thomas C,Henriet C,Dallerac R.Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochemistry and Molecular Biology,1997,27(11):963-972.
[47]   Dallerac R,Labeur C,Jallon J M,et al. A △9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster.Proceedings of the National Academy of Sciences of the United States of America,2000,97(17):9449-9454.
[48]   Marcillac F,Grosjean Y,Ferveur J F. A single mutation alters production and discrimination of Drosophila sex pheromones. Proceedings of the Royal Society B-Biological Sciences,2005, 272(1560):303-309.
[49]   Houot B,Bousquet F,Ferveur JF. The consequences of regulation of desat1 affects both pheromone emission and detection in Drosophila melanogaster. Genetics,2010,185(4):1297.
[50]   Bonsquet F,Nojima T,Houot B,et al. Expression of a desaturase gene, desat1,in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila. Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):249-254.
[51]   Shirangi T R,Dufour H D,Williams T M,et al.Rapid evolution of sex pheromone-producing enzyme expression in Drosophila.PLoS Biology,2009,7(8):e1000168.
[52]   Ng S H,Shankar S,Shikichi Y, et al. Pheromone evolution and sexual behavior in Drosophila are shaped by male sensory exploitation of other males. Proceedings of the National Academy of Sciences of the United States of America,2014,111(8):3056-3061.
[53]   Wang Y,da Cruz T C,Pulfemuller T,et al. Inhibition of fatty acid desaturases in Drosophila melanogaster larvae blocks feeding and developmental progression. Archives of Insect Biochemistry and Physiology,2016,92(1):1-18.
[54]   Albre J,Lienard M A,Sirey T M,et al. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genetics, 2012,8(1):e1002489.
[55]   Albre J,Steinwender B,Newcomb R D. The evolution of desaturase gene regulation involved in sex pheromone production in leafroller moths of the genus Planotortrix. Journal of Heredity, 2012,104(5):627-638.
[56]   Hagström ÅK,Albre J,Tooman L K,et al. A novel fatty acyl desaturase from the pheromone glands of Ctenopseustis obliquana and C. herana with specific Z5-desaturase activity on myristic acid.Journal of Chemical Ecology,2014,40(1):63-70.
[57]   Roelofs W L,Liu W,Hao G,et al.Evolution of moth sex pheromones via ancestral genes.Proceedings of the National Academy of Sciences of the United States of America,2002, 99(21):13621-13626.
[58]   Ding B J,Carraher C,Lofstedt C.Sequence variation determining stereochemistry of a △11 desaturase active in moth sex pheromone biosynthesis.Insect Biochemistry and Molecular Biology,2016,74:68-75.
[59]   Fujii T,Yasukochi Y,Rong Y,et al. Multiple △11-desaturase genes selectively used for sex pheromone biosynthesis are conserved in Ostrinia moth genomes. Insect Biochemistry and Molecular Biology,2015,61:62-68.
[60]   Bu ek A,Matou ková P,Vogel H,et al. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase.Proceedings of the National Academy of Sciences of the United States of America,2015,112(41):12586-12591.
[61]   Matousková P,Pichová I,Svatoá A. Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11-and 10,12-desaturase activity. Insect Biochemistry and Molecular Biology,2007,37(6):601-610.
[62]   Fujii T,Suzuki M G,Katsuma S,et al. Discovery of a disused desaturase gene from the pheromone gland of the moth Ascotis selenaria, which secretes an epoxyalkenyl sex pheromone.Biochemical and Biophysical Research Communications,2013,441(4):849.
[63]   Haritos V S,Horne I,Damcevski K,et al. The convergent evolution of defensive polyacetylenic fatty acid biosynthesis genes in soldier beetles. Nature Communications,2012, 3(4):1150.
[64]   Bu ek A,Vogel H,Matou ková P,et al. The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. Insect Biochemistry and Molecular Biology, 2013,43(8):724-731.
[65]   Badouin H,Belkhir K,Gregson E,et al. Transcriptome characterisation of the ant Formica exsecta with new insights into the evolution of desaturase genes in social Hymenoptera.PLoS One,2013,8(7):e68200.
[66]   Chen Q M,Cheng D J,Liu S P,et al. Genome-wide identification and expression profiling of the fatty acid desaturase gene family in the silkworm, Bombyx mori.Genetics and Molecular Research,2014,13(2):3747-3760.
[67]   Lee D-W,Kim Y,Koh KH. RNA interference of PBAN receptor suppresses expression of two fatty acid desaturases in female Plutella xylostella. Journal of Asia-Pacific Entomology,2011,14(4):405-410.
[68]   Köblös G,Dankó T,Sipos K,et al. The regulation of △11-desaturase gene expression in the pheromone gland of Mamestra brassicae(Lepidoptera; Noctuida)during pheromonogenesis.General and Comparative Endocrinology,2015,19(2):217-227.
[69]   Lassance J M,Groot A T,Liénard M A,et al. Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature,2010,466(7305):486-489.
[70]   Moto K,Yoshiga T,Yamamoto M,et al. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori.Proceedings of the National Academy of Sciences of the United States of America,2003,100(16):9156-9161.
[71]   Antony B,Fujii T,Moto K,et al. Pheromone-gland-specific fatty-acyl reductase in the adzuki bean borer,Ostrinia scapulalis (Lepidoptera:Crambidae). Insect Biochemistry and Molecular Biology,2009,39(2):90-95.
[72]   Liénard M A,Hagstöm Å K,Lassance J M,et al. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proceedings of the National Academy of Sciences of the United States of America,2010,107(24):10955-10960.
[73]   Hagström Å K,Liénard M A,Groot A T,et al. Semi-selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition. PLoS One,2012,7(5):e37230.
[74]   Carot-Sans G,Muñoz L,Piulachs M D,et al. Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis.Insect Molecular Biology,2015,24(1):82-92.
[1] FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway[J]. China Biotechnology, 2017, 37(9): 31-40.
[2] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[3] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[4] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[5] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.
[6] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[7] LIU Di, YAN Ting, HE Xiu-juan, ZHENG Wen-yun, MA Xing-yuan. Preparation and Preliminary Evaluation of Triple Oral Vaccine Against Bacterial Diarrhea[J]. China Biotechnology, 2017, 37(7): 18-26.
[8] ZHOU Zhi-yu, WANG Rong-hua, JIN Sheng-zhen, WANG Hong-quan, XIAO Tiao-yi. The Expression Characteristics of IgM,C3 and LSZ in the Offspring from Female Ctenopharyngodon idella Immuned by Astragalus Polysaccharides[J]. China Biotechnology, 2017, 37(7): 34-41.
[9] LI Yang, WU Chou-fei, WU Xiao-qin, YE Jian-ren, ZHANG Li-qin. Gene Synthesis of Bacillus thuringiensis Cry3Aa and High-level Expression in Burkholderia pyrrocinia JK-SH007 as a Biopesticide[J]. China Biotechnology, 2017, 37(6): 70-77.
[10] LI Yan-wei, MA Yi, HAN Lei, XIAO Xing, DANG Shi-ying, WEN Tao, WANG De-hua, FAN Zhi-yong. A Preliminary Study on Fas Apoptosis Inhibitory Molecule FAIM 1 Inducing and Simple Obesity[J]. China Biotechnology, 2017, 37(6): 37-42.
[11] WANG Zhi-ming. The Progress in the Study of Vaccine Delivery Technology[J]. China Biotechnology, 2017, 37(4): 98-103.
[12] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[13] WANG Xi-guang, WANG Juan, ZHANG Lin. A. thaliana Protein Abundance Analysis Coresponding with Elongation Efficiency[J]. China Biotechnology, 2017, 37(2): 40-47.
[14] LIU Yan-yan, LI Hui-rong, HU Yue, FAN Yang-yang, LI Xiang-ming, TAN Qing-qing, WU Jia-qiang, BU Xun. Multiplex Fluorescent Real-time PCR Detection of Fox, Mink, Raccoon and Dog Derived Materials in Feedstuff[J]. China Biotechnology, 2017, 37(12): 67-76.
[15] CHI Xin-tong, MAO Shao-ming. Optimization of Bioethanol Production by Brown Algae[J]. China Biotechnology, 2017, 37(12): 111-118.