Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (8): 78-83    DOI: 10.13523/j.cb.20170812
    
The Application of Graphene and Derivatives in Orthopedics
JIAO Yang, LIU Heng, Talatibaike·Maimaitijuma, CAO Yong-ping
Department of Orthopedics, Peking University First Hospital, Beijing 100034, China
Download: HTML   PDF(724KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Graphene and its derivatives have unique physical, chemical and biological properties, such as antibacterial property, promoting osteogenesis, increasing the wear resistance of composite materials, etc. It has broad application prospects in biomedicine and tissue engineering. The application and research progress of graphene and its derivatives in orthopedics were introduced, in order to provide theoretical basis for the future clinical and fundamental research.

Key wordsBiomaterial      Graphene      Application      Derivative      Orthopedic     
Received: 07 February 2017      Published: 25 August 2017
ZTFLH:  Q819  
Cite this article:

JIAO Yang, LIU Heng, Talatibaike·Maimaitijuma, CAO Yong-ping. The Application of Graphene and Derivatives in Orthopedics. China Biotechnology, 2017, 37(8): 78-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170812     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I8/78

[1] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007,6(3):183-191.
[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666-669.
[3] Liu Z, Robinson J T, Sun X, et al. PEGylated nano graphene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008, 130(33):10876-10877.
[4] Rana V K, Choi M C, Kong J Y, et al. Synthesis and drug-delivery behavior of chitosan-funetionalized graphene oxide hybrid nanosheets. Macromole Mater Eng, 2011, 296(2):131-140.
[5] Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7):4317-4323.
[6] Shi J, Guo J, Bai G, et al. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity. Biosens Bioelectron, 2015, 65(3):238-244.
[7] Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 2008, 130(33):10876-10877.
[8] Barinov A, Malcioglu B, Fabris S, et al. Initial stages of oxidation on graphitic surfaces:photoemission study and density functional theory calculations. J Phys Chem C, 2009, 113(21):9009-9013.
[9] Hu W, Peng C, Luo W, et al. Graphene -based antibacterial paper. ACS Nano, 2010, 4(7):4317-4323.
[10] Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite graphite oxide,graphene oxide and reduced graphene oxide:membrane and oxidative stress. ACS Nano, 2011, 5(9):6971-6980.
[11] Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nano, 2013, 8(8):594-601.
[12] Kumar S, Raj S, Kolanthai E, et al. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater, 2015, 7(5):3237-3252.
[13] Keun O P, Jong H L, Ji H P, et al. Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis:Spectroscopic analysis and animal study. Applied Spectroscopy Reviews, 2016, 51(7-9):540-551.
[14] Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells:potential for bone tissue engineering. J Appl Toxicol, 2015, 5(4):367-374.
[15] Aryaei A, Ahalapitiya H J, Ambalangodage C J. The effect of graphene substrate on osteoblast cell adhesion and proliferation. J Biomed Mater Res A, 2014, 102(9):3282-3290.
[16] Liu F Z, Fan Z J, Wang J Q. Preparation of graphene and its applications in biomedicine. Materials China, 2015, 34(7-8):589-594.
[17] Liu Z, Robinson J T, Sun X, et a1. PEGylated nano graphene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008, 130(33):10876-10877.
[18] Chen K H, Ling Y Z, Cao C, et al. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Materials Science and Engineering, 2016, 69(12):1222-1228.
[19] Zhao W K, Zhang S Y, Yang Q M, et al. Research progres of graphene and derivatives nanocomposite in orthopedics application. Journal of Biomedical Engineering, 2016, 3(33):604-608.
[20] Lee J H, Shin Y C, Lee S M, et al. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Nature Scientific Reports, 2015, 5(12):1-13.
[21] Feng P, Peng S P, Wu P, et al. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds. International Journal of Nanomedicine, 2016,11(7):3487-3500.
[22] Brachdel P, Bistolfi A, Bracco P, et al. UHMWPE for arthroplasty:past or future? J Orthop Traumatol, 2009, 10(1):1-8.
[23] Lahiri D, Dua R, Zhang C, et al. Graphene nano-platelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro. ACS Appl Mater Interfaces, 2012, 4(4):2234-2241.
[24] Chen Y F, Qi Y Y, Tai Z X, et al. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur Polym J, 2012, 48(6):1026-1033.
[25] Goncalves G, Portol S M, Ram Rezsantillan C, et al. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations.J Mater Sci Mater Med,2013,24(12):2787-2796.
[26] Qi Y Y, Tai Z X, Sun D F, et al. Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J Appl Polym Sci, 2013, 127(3):1885-1894.
[27] Porwal H, Grasso S, Reece M, et al. Review of graphene-ceramic matrix composites.Advances in Applied Ceramics, 2013, 112(8):443-454.
[28] Shuai C J, Gao C D, Feng P, et al. Graphene-reinforced mechanical properties of calcium silicate scafolds by laser sintering. RSC Adv, 2014, 4(25):12782-12788.
[29] Xie Y T, Li H Q, Zhang C, et al. Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed Mater, 2014, 9(2):025009.
[30] Mehrali M, Moghaddam E, Shirazi S F, et al. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces, 2014, 6(6):3947-3962.
[31] Tai Z X, Chen Y F, An Y F, et al. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett, 2012, 46(1):55-63.
[32] Yan H, Li S, Jia Y, et al. Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites. RSC Adv, 2015, 5(17):12578-12582.
[33] Saravanan S, Chawla A, Vairamani,M, et al. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2017, 034(1):1-11.
[34] Wang J K, Xiong G M, Zhu M, et al. Polymer-enriched 3d graphene foams for biomedical applications. ACS Applied Materials & Interfaces, 2015, 7(15):8275-8283.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[3] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[4] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[5] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[6] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[7] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[8] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.
[9] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[10] XU Li, WANG Yue, YAO Chi-yuan, XU Ping. Trends and Development Bottleneck Analysis of Gene Editing Technology[J]. China Biotechnology, 2018, 38(12): 113-122.
[11] Jing WANG,Xin XU,Xue-yu WANG,Lun-guang YAO,Yun-chao KAN,Jun JI. Research Progress of Loop-Mediated Isothermal Amplification in Food Safety Testing[J]. China Biotechnology, 2018, 38(11): 84-91.
[12] WANG Xi, CHEN Xi-ming, PU Tong-liang. Progress on High Efficient Expression and Application of Lysostaphin[J]. China Biotechnology, 2017, 37(9): 118-125.
[13] ZHAO Zhi-guo, CUI Qiang, ZHAO Lin-li, WANG Hai-yan, LI Gang, LIU Lai-jun, AO Wei-hua, MA Cai-xia. Application Progress of the Technology of Droplet Digital PCR[J]. China Biotechnology, 2017, 37(6): 93-96.
[14] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[15] Jian-rong WU,Xing-qiao PENG,Xiao-bei ZHAN. Advance in Application of Polysialic Acid,a Non-GAGs, Non-immunogenic Biomaterial[J]. China Biotechnology, 2017, 37(12): 96-102.