Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (7): 124-132    DOI: 10.13523/j.cb.20170719
    
The Induction Effect of Metal Ions for Cell Autophagy
LI Sheng
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University;Key Laboratory of Systems Bioengineering, Ministry of Education, Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(781KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Autophagy is one of the most important physiological processes in eukaryotic organisms, which can degrade the misfolded proteins and the abnormal organelles by lysosomes. Autophagy is widely involved in many pathological and physiological processes. It is essential to reveal the molecular mechanism of autophagy, which will not only help to understand the physiological significance of autophagy, but also provide a theoretical basis for developing new drug targets for the treatment of diseases. Metal ions can induce autophagy through different signaling pathways, and this mechanism is significant in drug development and disease treatment. The molecular mechanism of autophagy and the induction effect via metal ions are discussed.

Key wordsMolecular mechanism      Metal ions      Induction      Autophagy     
Received: 24 March 2017      Published: 25 July 2017
ZTFLH:  Q813  
Cite this article:

LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy. China Biotechnology, 2017, 37(7): 124-132.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170719     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I7/124

[1] Klionsky D J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 2007, 8(11): 931-937.
[2] Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology, 2009, 10(7): 458-467.
[3] Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Research, 2014, 24(1): 24-41.
[4] Ravikumar B, Futter M, Jahreiss L, et al. Mammalian macroautophagy at a glance. Journal of Cell Science, 2009, 122(11): 1707-1711.
[5] Shpilka T, Elazar Z. Shedding light on mammalian microautophagy. Developmental Cell, 2011, 20(1): 1-2.
[6] Li W W, Li J, Bao J K. Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences, 2012, 69(7): 1125-1136.
[7] Mijaljica D, Prescott M, Devenish R J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 2011, 7(7): 673-682.
[8] Xie W, Zhang L, Jiao H, et al. Chaperone-mediated autophagy prevents apoptosis by degrading BBC3/PUMA. Autophagy, 2015, 11(9): 1623-1635.
[9] Scarlatti F, Granata R, Meijer A, et al. Does autophagy have a license to kill mammalian cells. Cell Death & Differentiation, 2009, 16(1): 12-20.
[10] Zhang S J, Yang W, Wang C, et al. Autophagy: A double-edged sword in intervertebral disk degeneration. Clinica Chimica Acta, 2016, 457:27-35.
[11] Hamacher-Brady A. Autophagy regulation and integration with cell signaling. Antioxidants & Redox Signaling, 2012, 17(5): 756-765.
[12] Klionsky D J, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2016, 12(1): 1-222.
[13] Maiuri M C, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 2007, 8(9): 741-752.
[14] 钱帅伟, 罗艳蕊, 漆正堂, 等. 细胞自噬的分子学机制及运动训练的调控作用. 体育科学, 2012, 32(1): 64-70. Qian S W, Luo Y R, Qi Z T, et al. The molecular mechanism of autophagy and exercise-related molecular regulatory role. China Sport Science, 2012, 32(1): 64-70.
[15] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1): 27-42.
[16] Maret W. The metals in the biological periodic system of the elements: Concepts and conjectures. International Journal of Molecular Sciences, 2016, 17(1): 66.
[17] Sahni S, Bae D H, Jansson P, et al. The Mechanistic Role of Chemically Diverse Metal Ions in the Induction of Autophagy. Pharmacological Research, 2017,119:118-127.
[18] Rosner M, Hanneder M, Siegel N, et al. The mTOR pathway and its role in human genetic diseases. Mutation Research/Reviews in Mutation Research, 2008, 659(3): 284-292.
[19] Sarbassov D D, Ali S M, Sabatini D M. Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 2005, 17(6): 596-603.
[20] Nakao R, Hirasaka K, Goto J, et al. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Molecular and Cellular Biology, 2009, 29(17): 4798-4811.
[21] Jung C H, Ro S H, Cao J, et al. mTOR regulation of autophagy. FEBS Letters, 2010, 584(7): 1287-1295.
[22] Gwinn D M, Shackelford D B, Egan D F, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 2008, 30(2): 214-226.
[23] Kang R, Zeh H, Lotze M, et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation, 2011, 18(4): 571-580.
[24] Thoresen S B, Pedersen N M, Liestøl K, et al. A phosphatidylinositol 3-kinase class Ⅲ sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Experimental Cell Research, 2010, 316(20): 3368-3378.
[25] Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology, 2007, 9(10): 1142-1151.
[26] Sun Q, Fan W, Chen K, et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class Ⅲ phosphatidylinositol 3-kinase. Proceedings of the National Academy of Sciences, 2008, 105(49): 19211-19216.
[27] Ciechomska I, Goemans G, Skepper J, et al. Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene, 2009, 28(21): 2128-2141.
[28] Boyce M, Bryant K F, Jousse C, et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science, 2005, 307(5711): 935-939.
[29] Novoa I, Zeng H, Harding H P, et al. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. The Journal of Cell Biology, 2001, 153(5): 1011-1022.
[30] Tallóczy Z, Jiang W, Virgin H W, et al. Regulation of starvation-and virus-induced autophagy by the eIF2α kinase signaling pathway. Proceedings of the National Academy of Sciences, 2002, 99(1): 190-195.
[31] Koumenis C, Naczki C, Koritzinsky M, et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Molecular and Cellular Biology, 2002, 22(21): 7405-7416.
[32] B’chir W, Maurin A C, Carraro V, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Research, 2013,41(16):7683-7699.
[33] D’Amelio M, Cecconi F. A novel player in the p53-mediated autophagy: Sestrin2.Cell Cycle, 2009,8(10:):1466-1470.
[34] Maiuri M C, Malik S A, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle, 2009, 8(10): 1571-1576.
[35] Budanov A V. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxidants & Redox Signaling, 2011, 15(6): 1679-1690.
[36] Weber J D, Taylor L J, Roussel M F, et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biology, 1999, 1(1): 20-26.
[37] Ryan K M. p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. European Journal of Cancer, 2011, 47(1): 44-50.
[38] Tasdemir E, Maiuri M C, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10(6): 676-687.
[39] 王宠, 张萍, 朱卫国. 细胞自噬与肿瘤发生的关系. 中国生物化学与分子生物学报, 2010,11: 988-997. Wang C, Zhang P, Zhu W G. Relationship between autophagy and tumorigenesis. Chinese Journal of Biochemistry and Molecular Biology, 2010,11: 988-997.
[40] Carafoli E. Intracellular calcium homeostasis. Annual Review of Biochemistry, 1987, 56(1): 395-433.
[41] Sukumaran P, Sun Y, Vyas M, et al. TRPC1-mediated Ca2+ entry is essential for the regulation of hypoxia and nutrient depletion-dependent autophagy. Cell Death & Disease, 2015, 6(3): e1674.
[42] Jiang L B, Cao L, Yin X F, et al. Activation of autophagy via Ca2+-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress. Cell Cycle, 2015, 14(6): 867-879.
[43] Jin Y, Bai Y, Ni H, et al. Activation of autophagy through calcium‐dependent AMPK/mTOR and PKCθ pathway causes activation of rat hepatic stellate cells under hypoxic stress. FEBS Letters, 2016,590(5):672-682.
[44] Krishan S, Richardson D R, Sahni S. Amp kinase (prkaa1). Journal of Clinical Pathology, 2014, 67(9): 758-763.
[45] Krishan S, Richardson D R, Sahni S. Adenosine monophosphate-activated kinase and Its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Molecular Pharmacology, 2015, 87(3): 363-377.
[46] Medina D L, Ballabio A. Lysosomal calcium regulates autophagy. Autophagy, 2015, 11(6): 970-971.
[47] Medina D L, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17(3): 288-299.
[48] Schreiber R, Landau D. Potassium in Health and Disease [M]. Springer:Encyclopedia of Metalloproteins, 2013: 1804-1807.
[49] Perez-Neut M, Haar L, Rao V, et al. Activation of hERG3 channel stimulates autophagy and promotes cellular senescence in melanoma. Oncotarget, 2016, 7(16): 21991-22004.
[50] Canu N, Tufi R, Serafino A L, et al. Role of the autophagic‐lysosomal system on low potassium‐induced apoptosis in cultured cerebellar granule cells. Journal of Neurochemistry, 2005, 92(5): 1228-1242.
[51] Kaasik A, Rikk T, Piirsoo A, et al. Up‐regulation of lysosomal cathepsin L and autophagy during neuronal death induced by reduced serum and potassium. European Journal of Neuroscience, 2005, 22(5): 1023-1031.
[52] Richardson D R, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochimica Et Biophysica Acta (BBA)-Reviews on Biomembranes, 1997, 1331(1): 1-40.
[53] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 1995, 18(2): 321-336.
[54] Kurz T, Brunk U T. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form. Autophagy, 2009, 5(1): 93-95.
[55] 朱京, 谭晓荣. 活性氧与自噬的研究进展. 生命科学, 2011, 23(10): 987-992. Zhu j, Tang X R. Research advances in ROS and autophagy. Chinese Bulletin of Life Sciences, 2011, 23(10):987-992.
[56] Kurz T, Eaton J W, Brunk U T. The role of lysosomes in iron metabolism and recycling. The International Journal of Biochemistry & Cell Biology, 2011, 43(12): 1686-1697.
[57] Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Research, 2016, 26(9): 1021-1032.
[58] Festa R A, Thiele D J. Copper: an essential metal in biology. Current Biology: CB, 2011, 21(21): R877-R883.
[59] Denoyer D, Masaldan S, La Fontaine S, et al. Targeting copper in cancer therapy: 'Copper That Cancer’. Metallomics: Integrated Biometal Science, 2015, 7(11): 1459-1476.
[60] Kiffin R, Bandyopadhyay U, Cuervo A M. Oxidative stress and autophagy. Antioxidants & Redox Signaling, 2006, 8(1-2): 152-162.
[61] Gutierrez E, Richardson D R, Jansson P J. The anticancer agent Di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms persistent induction of autophagosome synthesis and impairment of lysosomal integrity. Journal of Biological Chemistry, 2014, 289(48): 33568-33589.
[62] Zhong W, Zhu H, Sheng F, et al. Activation of the MAPK11/12/13/14(p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells. Autophagy, 2014, 10(7): 1285-1300.
[63] Hancock C N, Stockwin L H, Han B, et al. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radical Biology and Medicine, 2011, 50(1): 110-121.
[64] Yang Y, Li C, Fu Y, et al. Redox cycling of a copper complex with benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone contributes to its enhanced antitumor activity, but no change in the mechanism of action occurs after chelation. Oncology Reports, 2016, 35(3): 1636-1644.
[65] Trejo-Solís C, Jimenez-Farfan D, Rodriguez-Enriquez S, et al. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer, 2012, 12(1): 156.
[66] Hung H H, Huang W P, Pan C Y. Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell Biology and Toxicology, 2013, 29(6): 415-429.
[67] Miyazaki T, Takenaka T, Inoue T, et al. Lipopolysaccharide-induced overproduction of nitric oxide and overexpression of iNOS and interleukin-1β proteins in zinc-deficient rats. Biological Trace Element Research, 2012, 145(3): 375-381.
[68] Summersgill H, England H, Lopez-Castejon G, et al. Zinc depletion regulates the processing and secretion of IL-1β. Cell Death & Disease, 2014, 5(1): e1040.
[69] Cartharius K, Frech K, Grote K, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics, 2005, 21(13): 2933-2942.
[70] Li Y, Zhang L, Li K, et al. ZNF32 inhibits autophagy through the mTOR pathway and protects MCF-7 cells from stimulus-induced cell death. Scientific Reports, 2015, 5:9288.
[71] Gorojod R M, Alaimo A, Porte Alcon S, et al. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radical Biology & Medicine, 2015, 87:237-251.
[72] Zhang J, Cao R, Cai T, et al. The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotoxicity Research, 2013, 24(4): 478-490.
[73] Yuan Z, Ying X P, Zhong W J, et al. Autophagy attenuates MnCl2-induced apoptosis in human bronchial epithelial cells. Biomedical and Environmental Sciences: BES, 2016, 29(7): 494-504.
[74] Liu J, Guo W, Li J, et al. Tumor-targeting novel manganese complex induces ROS-mediated apoptotic and autophagic cancer cell death. International Journal of Molecular Medicine, 2015, 35(3): 607-616.
[75] Ogata A, Yanagie H, Ishikawa E, et al. Antitumour effect of polyoxomolybdates: induction of apoptotic cell death and autophagy in in vitro and in vivo models. British Journal of Cancer, 2008, 98(2): 399-409.
[76] Yang L, Tan P, Zhou W, et al. N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1α pathway in retinal ganglion cells. Cellular and Molecular Neurobiology, 2012, 32(8): 1275-1285.
[77] Thonqchot S, Yongvanit P, Loilome W, et al. High expression of HIF-1α, BNIP3 and PI3KC3: hypoxia-induced autophagy predicts cholangiocarcinoma survival and metastasis. Asian Pacific Journal of Cancer Prevention Apjcp, 2014, 15(15): 5873-5878.
[78] Hu Y L, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Research, 2012, 72(7): 1773-1783.
[79] Naves T, Jawhari S, Jauberteau M O, et al. Autophagy takes place in mutated p53 neuroblastoma cells in response to hypoxia mimetic CoCl(2). Biochemical Pharmacology, 2013, 85(8): 1153-1161.
[80] 史美琳, 周阳, 刘海涛, 等. 镉诱导细胞自噬的分子机制研究进展. 生物学杂志, 2016, 33(5): 79-82. Shi M L, Zhou Y, Liu H T. et al. Advance in molecular mechanism of autophagy induced by cadmium. Journal of Biology, 2016, 33(5): 79-82.
[81] Wang Q W, Wang Y, Wang T, et al. Cadmium induced autophagy promotes survival of rat cerebral cortical neurons by activating class Ⅲ phosphoinositide 3-kinase/beclin-1/B-cell lymphoma 2 signaling pathways. Molecular Medicine Reports, 2015, 12(2): 2912-2918.
[82] Wang Q W, Wang Y, Wang T, et al. Cadmium-induced autophagy is mediated by oxidative signaling in PC-12 cells and is associated with cytoprotection. Molecular Medicine Reports, 2015, 12(3): 4448-4454.
[83] Sui L, Zhang R H, Zhang P, et al. Lead toxicity induces autophagy to protect against cell death through mTORC1 pathway in cardiofibroblasts. Bioscience Reports, 2015, 35(2):e00186.
[84] Kerr R P, Krunkosky T M, Hurley D J, et al. Lead at 2.5 and 5.0μmol/L induced aberrant MH-Ⅱ surface expression through increased MⅡ exocytosis and increased autophagosome formation in Raw 267.4 cells. Toxicology in Vitro, 2013, 27(3): 1018-1024.
[85] Lv X H, Zhao D H, Cai S Z, et al. Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride. Toxicology Letters, 2015, 239(2): 131-140.
[86] Bolt A M, Zhao F, Pacheco S, et al. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells. Toxicology and Applied Pharmacology, 2012, 264(2): 255-261.
[87] Cheng J, Wei H L, Chen J, et al. Antitumor effect of arsenic trioxide in human K562 and K562/ADM cells by autophagy. Toxicology Mechanisms and Methods, 2012, 22(7): 512-519.
[88] Kanzawa T, Kondo Y, Ito H, et al. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Research, 2003, 63(9): 2103-2108.
[89] BonakdarYazdi B, Khodagholi F, Shaerzadeh F, et al. The effect of arsenite on spatial learning: Involvement of autophagy and apoptosis. European Journal of Pharmacology, 2017, 796:54-61.
[90] Thévenod F, Lee W K. Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Archives of Toxicology, 2013, 87(10): 1743-1786.
[91] Son Y O, Wang X, Hitron J A, et al. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells. Toxicology and Applied Pharmacology, 2011, 255(3): 287-296.
[92] Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Molecular Cell, 2008, 30(6): 678-688.
[93] Alexander A, Kim J, Walker C L. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy, 2010, 6(5): 672-673.
[94] Messner B, Türkcan A, Ploner C, et al. Cadmium overkill: autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cellular and Molecular Life Sciences, 2016, 73(8): 1699-1713.
[95] Misra U K, Gawdi G, Pizzo S V. Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium+. Cellular Signalling, 2003, 15(11): 1059-1070.
[96] Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism, 2005, 2(1): 21-33.
[97] Luo B, Lin Y, Jiang S, et al. Endoplasmic reticulum stress eIF2α-ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney. Cell Death & Disease, 2016, 7(6): e2251.
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[4] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[5] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[6] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[7] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[8] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[9] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[10] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[11] Da-wei FU,Ying-ying SUN,wei XU. Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI[J]. China Biotechnology, 2019, 39(3): 21-28.
[12] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[13] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[14] ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials[J]. China Biotechnology, 2019, 39(12): 64-72.
[15] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.