Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (8): 113-122    DOI: 10.13523/j.cb.20160815
    
Research Progress on Application of Photosynthetic Microbial Mixed Culture
MA Bo-yuan, ZHANG Guang-ming, WANG Hang-yao, XU Hong-zhang, PENG Meng, WANG Yuan-yuan
School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
Download:   PDF(695KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mixed culture of photosynthetic bacteria and other microorganisms under illumination has been extensively studied in recent years. The characteristic and applications (wastewater treatment, new energy production and materials production with high quality) of photosynthetic microbial mixed culture were analyzed, as well as factors on growth, metabolism and reproduction of mixed culture. The results showed that cooperation among microorganisms could promote the growth and reproduction of microorganisms, enhance the substrate utilization, and improve the production rate. Photosynthetic microbial mixed culture had the advantages of simple process, low cost, and high efficiency in wastewater treatment, new energy production and materials production with high quality. Among the factors that influence photosynthetic microbial mix culture, the most important ones were microbial dosage, proportion of mixed microorganisms, and pH of the culture. Based on the shortcomings of photosynthetic microbial mixed culture, some suggestions on the development were proposed.



Key wordsMixed culture      Photosynthetic bacteria      Application      Factors     
Received: 03 May 2016      Published: 25 August 2016
ZTFLH:  Q89  
Cite this article:

MA Bo-yuan, ZHANG Guang-ming, WANG Hang-yao, XU Hong-zhang, PENG Meng, WANG Yuan-yuan. Research Progress on Application of Photosynthetic Microbial Mixed Culture. China Biotechnology, 2016, 36(8): 113-122.

URL:

http://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160815     OR     http://manu60.magtech.com.cn/biotech/Y2016/V36/I8/113

[1] 卢海凤,张光明,赵微. 光合细菌污水资源化技术. 北京:中国建筑工业出版社,2014. 1-12. Lu H F, Zhang G M, Zhao W. Photosynthetic Bacteria Wastewater Treatment Technology. Beijing:China Building Industry Press, 2014. 1-12.
[2] 马楠,刘华波,王辉. 应用于废水处理的光合细菌混合培养条件的优化. 安徽农业科学, 2011, 39(15):9151-9153. Ma N, Liu H B, Wang H. Optimization of cultural conditions for mixed photosynthetic bacteria used for wastewater treatment. Journal of Anhui Agri Sci, 2011,39(15):9151-9153.
[3] 文娅,赵国柱,周传斌,等.生态工程领域微生物菌剂研究进展. 生态学报,2011,31(20):6287-6294. Wen Y, Zhao G Z, Zhou C B, et al. Research progress of microbial agents in ecological engineering. Acta Ecologica Sinica, 2011,31(20):6287-6294.
[4] 李春笋,郭顺星.微生物混合发酵的研究及应用. 微生物学通报,2004,31(3):156-161. Li C S,Guo S X. Studies and applications on microbial mixed fermentation. Microbiology China,2004,31(3):156-161.
[5] 王冰,周集体,杨宝灵,等. 光合细菌-藻类共固定深度净化污水的研究. 大连民族学院学报,2014,16(3):249-252. Wang B, Zhou J T, Yang B L, et al. Deep treatment of wastewater by co-immobilized photosynthetic bacteria and algae. Journal of Dalian Nationalities University, 2014,16(3):249-252.
[6] 唐婷,陈济琛,田燕丹,等. 光合细菌与纳豆菌的混合培养及混合处理养殖水的研究. 福建农业学报,2015,30(4):367-372. Tang T, Chen J S, Tian Y D, et al. Study on the mixed culture of photosynthetic bacteria with Balillus natto and its effects on aquaculture water. Fujian Journal of Agriculture Sciences, 2015,30(4):367-372.
[7] Asada Y, Tokumoto M, Aihara Y, et al. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy, 2006,31(11):1509-1513.
[8] Argun H, Kargi F, Kapdan I K. Hydrogen production by combined dark and light fermentation of ground wheat solution. International Journal of Hydrogen Energy, 2009, 34(10):4305-4311.
[9] 徐德阳,王莉莉,杜春梅. 微生物共培养技术的研究进展. 微生物学报,2015,55(9):1089-1096. Xu D Y, Wang L L, Du C M. Progress in microbial co-culture——A review. Acta Microbiologica Sinica, 2015,55(9):1089-1096.
[10] Liu S, Zhang G, Li X, et al. Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. Journal of Environmental Sciences, 2015,33:21-28.
[11] 何义进. 微生态制剂降解养殖水体氨氮及亚硝酸盐的研究. 南京:南京农业大学, 2007. He Y J. Study on ammonia and nitrite reducing in the pond using microorganism. Nanjing:Nanjing Agriculture University, 2007.
[12] Ozmihci S, Kargi F. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. International Journal of Hydrogen Energy, 2010,35(3):1106-1111.
[13] 姜海明,杨腾腾,冯磊,等. 芽孢杆菌与光合细菌对乌鳢养殖水的净化作用研究. 湖北农业科学,2010,49(6):1428-1430. Jiang H M, Yang T T, Feng L, et al. The purification of Bacillus subtilis and photosynthetic bacteria on cultured snakehead water. Hubei Agricultural Sciences, 2010,49(6):1428-1430.
[14] 王玮,陈军,刘晃,等. 中国水产养殖水体净化技术的发展概况. 上海海洋大学学报,2010,19(1):41-49. Wang W, Chen J, Liu H, et al. The overview of aquaculture water purification technology in China. Journal of Shanghai Ocean University, 2010,19(1):41-49.
[15] 黄雪娇,杨冲,罗雅雪,等.光合细菌在水污染治理中的研究进展.中国生物工程杂志,2014,34(11):119-124. Huang X J, Yang C, Luo Y X, et al. Research progress of photosynthetic bacteria in water pollution goverance. China Biotechnology, 2014,34(11):119-124.
[16] 刘芳,王敏,杨慧,等.净化养殖水体紫色非硫光合细菌的筛选与鉴定.中国生物工程杂志,2008,28(8):91-95. Liu F, Wang M, Yang H, et al. Screening and identification of purple non-sulfur photosynthetic bacteria purifying aquaculture water. China Biotechnology, 2008,28(8):91-95.
[17] 李君华,刘佳亮,曹学彬,等. 芽孢杆菌与光合细菌协同作用对养殖刺参的影响. 渔业现代化,2013,40(1):7-12. Li J H, Liu J L, Cao X B, et al. Effects of Bacillus subtilis and photosynthetic bacteria on cultured sea cucumber Apstichopus japonicas. Fishery Modernization, 2013,40(1):7-12.
[18] 朱建新,曲克明,刘慧,等. 小球藻和光合细菌在大菱鲆育苗中对水质调节作用的研究.海洋水产研究,2008,29(6):116-121. Zhu J X, Qu K M, Liu H, et al. Study on Chlorella pyrenoidosa and photosynthetic bacteria as water quality modulator in turbot larvae culture. Marine Fisheries Research. 2008,29(6):116-121.
[19] Jin L Y, Zhang G M, Tian H F. Current state of sewage treatment in China. Water Research, 2014, 66:85-98.
[20] 邹文娟,许晓慧,王国武,等. 光合细菌和枯草芽孢杆菌在污水处理中的应用. 广东农业科学,2010,37(9):199-201. Zou W J, Xu X H, Wang G W, et al. Application in sewage treatment of Photosynthetic bacteria and Bacillus subtillus. Guangdong Agricultural Scienses, 2010,37(9):199-201.
[21] 于振海,郑玉珍,卢红,等. 光合细菌和枯草芽孢杆菌对养殖水质的净化作用. 淡水渔业,2015,45(3):109-112. Yu Z H, Zheng Y Z, Lu H, et al. Purification effect of photosynthetic bacteria and Bacillus subtilis on aquaculture water qualitys. Freshwater Fisheries, 2015,45(3):109-112.
[22] 罗勇胜,李卓佳,杨莺莺,等. 光合细菌与芽孢杆菌协同净化养殖水体的研究. 农业环境科学学报,2006,25(S1):206-210. Luo Y S, Li Z J, Yang Y Y, et al. Synergism of photo-synthetic bacteria (PSB) and Bacillus sp. in purification of wastewater from aquatic farm. Journal of Agro-Environment Science, 2006,25(S1):206-210.
[23] Laocharoen S, Reungsang A, Plangklang P. Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5. Biotechnology for Biofuels, 2015,8(1):1.
[24] Argun H, Kargi F. Bio-hydrogen production by different operational modes of dark and photo-fermentation:an overview. International Journal of Hydrogen Energy, 2011,36(13):7443-7459.
[25] Liu B F, Ren N Q, Tang J, et al. Bio-hydrogen production by mixed culture of photo-and dark-fermentation bacteria. International Journal of Hydrogen Energy, 2010,35(7):2858-2862.
[26] Xie G J, Feng L B, Ren N Q, et al. Control strategies for hydrogen production through co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy, 2010,35(5):1929-1935.
[27] Ding J, Liu B F, Ren N Q, et al. Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy, 2009,34(9):3647-3652.
[28] Fang H H, Zhu H, Zhang T. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2006,31(15):2223-2230.
[29] Laurinavichene T, Tsygankov A. Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2015,40(41):14116-14123.
[30] Lee J Y, Lee E J. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides. Journal of Microbiology and Biotechnology, 2012,22(3):400-406.
[31] Zagrodnik R, Laniecki M. The role of pH control on biohydrogen production by single stage hybrid dark-and photo-fermentation. Bioresource Technology, 2015,194:187-195.
[32] Laurinavichene T, Tsygankov A. Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2015,40(41):14116-14123.
[33] Sun Q, Xiao W, Xi D, et al. Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2010,35(9):4076-4084.
[34] Ozmihci S, Kargi F. Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation. Journal of Industrial Microbiology & Biotechnology, 2010,37(4):341-347.
[35] Argun H, Kargi F. Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. International Journal of Hydrogen Energy, 2010,35(4):1604-1612.
[36] Argun H, Kargi F, Kapdan I K. Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. International Journal of Hydrogen Energy, 2009,34(15):6181-6188.
[37] Yokoi H, Mori S, Hirose J, et al. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters, 1998,20(9):895-899.
[38] Kargi F, Ozmihci S. Effects of dark/light bacteria ratio on bio-hydrogen production by combined fed-batch fermentation of ground wheat starch. Biomass and Bioenergy, 2010,34(6):869-874.
[39] Argun H, Kargi F. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy, 2010,35(12):6170-6178.
[40] Sagnak R, Kargi F. Hydrogen gas production from acid hydrolyzed wheat starch by combined dark and photo-fermentation with periodic feeding. International Journal of Hydrogen Energy, 2011,36(17):10683-10689.
[41] Laurinavichene T V, Laurinavichius K S, Tsygankov A A. Integration of purple non-sulfur bacteria into the starch-hydrolyzing consortium. International Journal of Hydrogen Energy, 2014,39(15):7713-7720.
[42] Morsy F M. CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system. Energy, 2015,87:594-604.
[43] Lu H, Lee P K. Effects of cellulose concentrations on the syntrophic interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in coculture fermentation for biohydrogen production. International Journal of Hydrogen Energy, 2015,40(35):11800-11808.
[44] Sargsyan H, Trchounian K, Gabrielyan L, et al. Novel approach of ethanol waste utilization:Biohydrogen production by mixed cultures of dark-and photo-fermentative bacteria using distillers grains. International Journal of Hydrogen Energy, 2016,41(4):2377-2382.
[45] Chandra R, Nikhil G N, Mohan S V. Single-stage operation of hybrid dark-photo fermentation to enhance biohydrogen production through regulation of system redox condition:Evaluation with real-field wastewater.International Journal of Molecular Sciences,2015,16(5):9540-9556.
[46] 郭子瑞,黄龙,陈志强,等. 活性污泥合成聚羟基脂肪酸酯工艺过程研究进展. 哈尔滨工业大学学报,2016,48(2):1-8. Guo Z R, Huang L, Chen Z Q, et al. Advances in polyhydroxyalkanoates synthesis by activated sludge. Journal of Harbin Institute of Technology, 2016,48(2):1-8.
[47] Fradinho J C, Domingos J M, Carvalho G, et al. Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresource Technology, 2013,132:146-153.
[48] Fradinho J C, Oehmen A, Reis M A. Effect of dark/light periods on the polyhydroxyalkanoate production of a photosynthetic mixed culture. Bioresource Technology, 2013,148:474-479.
[49] Serafim L S, Lemos P C, Oliveira R, et al. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding condition. Biotechnology and Bioengineering, 2004,87(2):145-160.
[50] Fradinho J C, Oehmen A, Reis M A. Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs):Substrate preferences and co-substrate uptake. Journal of Biotechnology, 2014,185:19-27.
[51] 赵微,张光明. 光合细菌处理废水过程中生物产氢技术研究进展. 中国生物工程杂志,2012,32(12):130-135. Zhao W, Zhang G M. Progress of biological hydrogen production in photosynthetic bacteria wastewater treatment. China Biotechnology, 2012, 32(12):130-135.
[52] 廖强,王永忠,朱恂,等. 初始底物浓度对序批式培养光合细菌产氢动力学影响.中国生物工程杂志,2007,27(11):51-56. Liao Q, Wang Y Z, Zhu X, et al. Effect of initial substrate concentration on kinetics of hydrogen production by photosynthetic bacteria in batch culture. China Biotecnology, 2007,27(11):51-56.
[53] 赵微,张光明. 微量元素对废水中光合细菌生长的影响. 哈尔滨工业大学学报,2012,44(2):52-55. Zhao W, Zhang G M. Effects of trace elements on photosynthetic bacteria growth in wastewater. Journal of Harbin Institute of Technology, 2012,44(2):52-55.
[54] 李扬,李茹莹,季民.固定化技术在促进光合细菌产氢中的应用.中国生物工程杂志,2014,34(7):96-101. Li Y, Li R Y, Ji M. Application of immobilization technology on enhancing hydrogen production by photosynthetic bacteria. China Biotechnology, 2014,34(7):96-101.

[1] WANG Xi, CHEN Xi-ming, PU Tong-liang. Progress on High Efficient Expression and Application of Lysostaphin[J]. China Biotechnology, 2017, 37(9): 118-125.
[2] JIAO Yang, LIU Heng, Talatibaike·Maimaitijuma, CAO Yong-ping. The Application of Graphene and Derivatives in Orthopedics[J]. China Biotechnology, 2017, 37(8): 78-83.
[3] ZHAO Zhi-guo, CUI Qiang, ZHAO Lin-li, WANG Hai-yan, LI Gang, LIU Lai-jun, AO Wei-hua, MA Cai-xia. Application Progress of the Technology of Droplet Digital PCR[J]. China Biotechnology, 2017, 37(6): 93-96.
[4] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[5] LIU Yi-jie, XUE Yong-chang. The Research Progress of Flavonoids in Plants[J]. China Biotechnology, 2016, 36(9): 81-86.
[6] WANG Dian-liang, DU Juan. The Current Research and Development Status of Cell Drug[J]. China Biotechnology, 2016, 36(9): 126-133.
[7] CHEN Da-Ming, LIU Xiao, MAO Kai-Yun, XIONG Yan. Development Status and Trend Analysis of Synthetic Biology Products[J]. China Biotechnology, 2016, 36(7): 117-126.
[8] WANG Xu-jing, ZHANG Xin, LIU Pei-lei, WANG Zhi-xing. The Application and Safety Assessment of Stacked Transgenic Plant[J]. China Biotechnology, 2016, 36(4): 18-23.
[9] WANG Dian-liang. The Clinical Application of Cell Drug[J]. China Biotechnology, 2016, 36(12): 117-123.
[10] ZHANG Jian, WU Hao, LI Yan-ni, QIAO Jian-jun. Advances in Research on Small Non-coding RNAs of Gram-positive Bacteria[J]. China Biotechnology, 2016, 36(10): 106-114.
[11] TANG Wen-yan, LUAN Zuo. Biological Characteristics and Clinical Application of Endothelial Progenitor Cells[J]. China Biotechnology, 2016, 36(10): 86-93.
[12] LIANG Li-zhu, SUN Jia-nan, LI Kai, LIU Ming-wei, DING Chen, QIN Jun. Proteome-wide Screening of Transcription Factor DNA Binding Activity in HepG2 Cells after Oleic Acid Treatment[J]. China Biotechnology, 2015, 35(5): 22-31.
[13] SHEN Liang, TAN Wen-jie. Progress on the Technique and its Application of Reverse Genetics for Coronaviruses[J]. China Biotechnology, 2015, 35(2): 84-91.
[14] WANG Rong-hua, SUN Xiu-juan, LI Qian, YAN Zhen-xin, Peter Proksch. The Research Progress of Marine Functional Molecules Phloroglucinol[J]. China Biotechnology, 2015, 35(10): 115-121.
[15] LIU Lu-gang, JI Xiao-jun, SHEN Meng-qiu, TONG Ying-jia, HUANG He. Red-mediated Scarless Recombination:Strategies and Applications[J]. China Biotechnology, 2014, 34(8): 88-96.