Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (6): 100-106    DOI: 10.13523/j.cb.20160614
    
Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors
GUO Zheng-rong1,2, PENG Huan-yan1, KANG Ji-wen1, JIANG Hui-qing2, SUN Dian-xing1
1. The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang 050082, China;
2. Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China
Download: HTML   PDF(421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The cellular membrane as a selectively permeable barrier plays an important role to maintain a relatively stable intracellular environment. But this limits the entry of biological macromolecules and drug into cells and have a obstacle in diagnosis and treatment of some of intracellular disease and drug-target applications. How to carry biological macromolecules and drugs through the cell membrane into the interior of the cell has also been a hot and difficult medical research. Cell-penetrating peptides(CPPS) are a class of diverse peptides and can carry polypeptides, proteins, nucleic acids, nanoparticles, virus particles and drugs through the cell membrane into cells, resulting in a complete cargo internalization. CPPS as a carrier with a high transduction efficiency and low toxicity characteristics have gotten widespread concern and lots of researches. These peptides as delivery vectors have a potential diagnostic and therapeutic applications in fluorescence imaging, cancer therapy, anti-inflammatory therapy and targeted therapy drugs.



Key wordsCell-penetrating peptides      Transduction mechanisms      Transmembrane delivery     
Received: 29 December 2015      Published: 25 June 2016
ZTFLH:  Q819  
Cite this article:

GUO Zheng-rong, PENG Huan-yan, KANG Ji-wen, JIANG Hui-qing, SUN Dian-xing. Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors. China Biotechnology, 2016, 36(6): 100-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160614     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I6/100

[1] Kurrikoff K, Gestin M, Langel U. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opin Drug Deliv, 2016,13(3):373-387.
[2] Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci, 2014,20(10):760-784.
[3] Jiang Y, Li M, Zhang Z, et al. Cell-penetrating peptides as delivery enhancers for vaccine. Curr Pharm Biotechnol, 2014,15(3):256-266.
[4] Funhoff A M, van Nostrum C F, Lok M C, et al. Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjug Chem, 2004,15(6):1212-1220.
[5] Liu B R, Liou J S, Huang Y W, et al. Intracellular delivery of nanoparticles and DNAs by IR9 cell-penetrating peptides. PLoS One, 2013,8(5):e64205.
[6] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988,55(6):1189-1193.
[7] Joliot A, Pernelle C, Deagostini-Bazin H, et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A, 1991,88(5):1864-1868.
[8] Wender P A, Mitchell D J, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A, 2000,97(24):13003-13008.
[9] Mai J C, Shen H, Watkins S C, et al. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem, 2002,277(33):30208-30218.
[10] El-Andaloussi S, Johansson H, Magnusdottir A, et al. TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. J Control Release, 2005,110(1):189-201.
[11] Tunnemann G, Ter-Avetisyan G, Martin R M, et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci, 2008,14(4):469-476.
[12] Oehlke J, Scheller A, Wiesner B, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta, 1998,1414(1-2):127-139.
[13] Morris M C, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol, 2001,19(12):1173-1176.
[14] Pujals S, Giralt E. Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev, 2008,60(4-5):473-484.
[15] Zahid M, Robbins P D. Identification and characterization of tissue-specific protein transduction domains using peptide phage display. Methods Mol Biol, 2011,683:277-289.
[16] Nicklin S A, White S J, Watkins S J, et al. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation, 2000,102(2):231-237.
[17] Mi Z, Lu X, Mai J C, et al. Identification of a synovial fibroblast-specific protein transduction domain for delivery of apoptotic agents to hyperplastic synovium. Mol Ther, 2003,8(2):295-305.
[18] Chamarthy S P, Jia L, Kovacs J R, et al. Gene delivery to dendritic cells facilitated by a tumor necrosis factor alpha-competing peptide. Mol Immunol, 2004,41(8):741-749.
[19] Rehman K K, Bertera S, Bottino R, et al. Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor nemo-binding domain peptide. J Biol Chem, 2003,278(11):9862-9868.
[20] Zahid M, Phillips B E, Albers S M, et al. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice. PLoS One, 2010,5(8):e12252.
[21] Avula U M, Kim G, Lee Y E, et al. Cell-specific nanoplatform-enabled photodynamic therapy for cardiac cells. Heart Rhythm, 2012,9(9):1504-1509.
[22] Chien W M, Liu Y, Chin M T. Genomic DNA recombination with cell-penetrating peptide-tagged cre protein in mouse skeletal and cardiac muscle. Genesis, 2014,52(7):695-701.
[23] Gump J M, June R K, Dowdy S F. Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction. J Biol Chem, 2010,285(2):1500-1507.
[24] Veach R A, Liu D, Yao S, et al. Receptor/transporter-independent targeting of functional peptides across the plasma membrane. J Biol Chem, 2004,279(12):11425-11431.
[25] Mayor S, Parton R G, Donaldson J G. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol, 2014,6(6):1-20.
[26] Derossi D, Calvet S, Trembleau A, et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem,1996,271(30):18188-18193.
[27] Rusnati M, Coltrini D, Oreste P, et al. Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J Biol Chem, 1997,272(17):11313-11320.
[28] Tyagi M, Rusnati M, Presta M, et al. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem, 2001,276(5):3254-3261.
[29] Chen C J, Tsai K C, Kuo P H, et al. A heparan sulfate-binding cell penetrating peptide for tumor targeting and migration inhibition. Biomed Res Int, 2015,2015:237969.
[30] Ma D X, Shi N Q, Qi X R. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm, 2011,419(1-2):200-208.
[31] Di Pisa M, Chassaing G, Swiecicki J M. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry, 2015,54(2):194-207.
[32] Li Y, Rosal R V, Brandt-Rauf P W, et al. Correlation between hydrophobic properties and efficiency of carrier-mediated membrane transduction and apoptosis of a p53 C-terminal peptide. Biochem Biophys Res Commun,2002,298(3):439-449.
[33] Jiao CY, Delaroche D, Burlina F, et al. Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem, 2009,284(49):33957-33965.
[34] Maniti O, Piao H R, Ayala-Sanmartin J. Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution. Int J Biochem Cell Biol, 2014,50:73-81.
[35] Makarov S S. NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res, 2001,3(4):200-206.
[36] Brown J D, Lin C Y, Duan Q, et al. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell, 2014,56(2):219-231.
[37] Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of Patients with parkinson disease. Proc Natl Acad Sci U S A, 1997,94(14):7531-7536.
[38] Karin M, Greten F R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005,5(10):749-759.
[39] May M J, D'Acquisto F, Madge L A, et al. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science, 2000,289(5484):1550-1554.
[40] Dave S H, Tilstra J S, Matsuoka K, et al. Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. J Immunol,2007,179(11):7852-7859.
[41] Good L, Awasthi S K, Dryselius R, et al. Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol, 2001,19(4):360-364.
[42] Deshayes S, Konate K, Aldrian G, et al. Structural polymorphism of non-covalent peptide-based delivery systems: highway to cellular uptake. Biochim Biophys Acta, 2010,1798(12):2304-2314.
[43] Tan X X, Actor J K, Chen Y. Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: proof of principle using mouse intraperitoneal infection. Antimicrob Agents Chemother, 2005,49(8):3203-3207.
[44] Tilley L D, Mellbye B L, Puckett S E, et al. Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: dose-response in mice infected with Escherichia coli. J Antimicrob Chemother, 2007,59(1):66-73.
[45] Katterle Y, Brandt B H, Dowdy S F, et al. Antitumour effects of PLC-gamma1-(SH2)2-TAT fusion proteins on EGFR/c-erbB-2-positive breast cancer cells. Br J Cancer, 2004,90(1):230-235.
[46] Takenobu T, Tomizawa K, Matsushita M, et al. Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther, 2002,1(12):1043-1049.
[47] Michiue H, Tomizawa K, Wei F Y, et al. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J Biol Chem, 2005,280(9):8285-8289.
[48] Kashiwagi H, McDunn J E, Goedegebuure P S, et al. TAT-Bim induces extensive apoptosis in cancer cells. Ann Surg Oncol, 2007,14(5):1763-1771.
[49] Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 1998,279(5349):377-380.
[50] Schott J W, Galla M, Godinho T, et al. Viral and non-viral approaches for transient delivery of mRNA and proteins. Curr Gene Ther, 2011,11(5):382-398.
[51] Gratton J P, Yu J, Griffith J W, et al. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med,2003,9(3):357-362.
[52] Youn J I, Park S H, Jin H T, et al. Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD. Cancer Gene Ther, 2008,15(11):703-712.
[53] Tiera M J, Shi Q, Winnik F M, et al. Polycation-based gene therapy: current knowledge and new perspectives. Curr Gene Ther, 2011,11(4):288-306.
[54] Kornegay J N, Peterson J M, Bogan D J, et al. NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy. Skelet Muscle, 2014,4:18.
[55] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836):494-498.
[56] Nguyen Q T, Olson E S, Aguilera T A, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A, 2010,107(9):4317-4322.
[57] Ruan G, Agrawal A, Marcus A I, et al. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc, 2007,129(47):14759-14766.
[58] Lei Y, Tang H, Yao L, et al. Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem, 2008,19(2):421-427.
[59] Santra S, Yang H, Dutta D, et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun (Camb), 2004,24:2810-2811.
[60] Li H, Tsui T Y, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int J Mol Sci,2015,16(8):19518-19536.
[61] Zhang Q, Tang J, Fu L, et al. A pH-responsive alpha-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials, 2013,34(32):7980-7993.
[62] Marty C, Meylan C, Schott H, et al. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell Mol Life Sci, 2004,61(14):1785-1794.
[63] Walker L, Perkins E, Kratz F, et al. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm, 2012,436(1-2):825-832.
[64] Mo R H, Zaro J L, Shen W C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol Pharm, 2012,9(2):299-309.
[65] Sharma P, Kolawole A O, Wiltshire S M, et al. Accessibility of the coxsackievirus and adenovirus receptor and its importance in adenovirus gene transduction efficiency. J Gen Virol, 2012,93(Pt 1):155-158.
[66] Kida S, Eto Y, Maeda M, et al. Preparation of a Tat-related transporter peptide for carrying the adenovirus vector into cells. Protein Pept Lett, 2008,15(2):219-222.

[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.