Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (9): 114-121    DOI: 10.13523/j.cb.20150916
    
Research Advances in Molecular Biology of Pseudomonas Lipases
ZHA Dai-ming1,2, ZHANG Bing-huo1, LI Han-quan1, YAN Yun-jun2
1 School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China;
2 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML   PDF(507KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Microbial lipases, being major sources of commercial ones, which have been widely utilized in many industrial fields, such as foods, beverages, lipids, detergents, feeds, textiles, leathers, advanced materials, fine chemicals, medicines, cosmetics, papermaking, pollution treatment, and bioenergy, etc. Compared with other microbial lipases, bacterial lipases have more types of reactions and exhibit higher activity and better stability in many reactions. Amongst bacterial lipases, the most excellent ones are those being from the genus Pseudomonas. As one of the most excellent and the most widely used lipases, the study on Pseudomonas lipases has been a hot topic in the field of lipases. Research advances in molecular biology of Pseudomonas lipases, including mining and cloning of genetic resources, molecular mechanisms of gene expression regulation and protein secretion, strategies for efficient overexpression, protein crystallization and 3D structure analysis, and protein engineering, were summarized and reviewed. Furthermore, the future research directions of Pseudomonas lipases were prospected so as to provide a useful reference for the follow-up studies.



Key wordsPseudomonas      Lipase      Gene expression and regulation     
Received: 22 April 2015      Published: 25 September 2015
ZTFLH:  Q814.9  
Cite this article:

ZHA Dai-ming, ZHANG Bing-huo, LI Han-quan, YAN Yun-jun. Research Advances in Molecular Biology of Pseudomonas Lipases. China Biotechnology, 2015, 35(9): 114-121.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150916     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I9/114


[1] Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 2004, 64(6): 763-781.

[2] Angkawidjaja C, Kanaya S. Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cellular and Molecular Life Sciences, 2006, 63(23): 2804-2817.

[3] 舒正玉. 黑曲霉脂肪酶的酶学性质、基因克隆与表达及结构预测. 武汉:华中科技大学, 生命科学与技术学院,2007. Shu Z. Biochemical Characterization, Gene Cloning and Expression and Structure Prediction of Lipase from Aspergillus niger. Wuhan:Huazhong University of Science and Technology, College of Life Science and Technology,2007.

[4] Panizza P, Syfantou N, Pastor F I, et al. Acidic lipase Li PI.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols. Journal of Applied Microbiology, 2013, 114(3): 722-732.

[5] Jaeger K E, Eggert T. Lipases for biotechnology. Current Opinion in Biotechnology, 2002, 13(4): 390-397.

[6] Jaeger K E, Dijkstra B W, Reetz M T. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology, 1999, 53: 315-351.

[7] Sharma R, Chisti Y, Banerjee U C. Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001, 19(8): 627-662.

[8] Hasan F, Shah A A, Hameed A. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 2006, 39(2): 235-251.

[9] Arpigny J L, Jaeger K E. Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 1999, 343(1): 177-183.

[10] Zhang A, Gao R, Diao N, et al. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(2): 78-84.

[11] Tan Y, Miller K J. Cloning, expression, and nucleotide sequence of a lipase gene from Pseudomonas fluorescens B52. Applied and Environmental Microbiology, 1992, 58(4): 1402-1407.

[12] Dieckelmann M, Johnson L A, Beacham I R. The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. Journal of Applied Microbiology, 1998, 85(3): 527-536.

[13] Krzeslak J. Pseudomonas as a Microbial Enzyme Factory. Groningen:Department of Pharmaceutical Biology of the University of Groningen, 2009:11-12.

[14] Chung G H, Lee Y P, Jeohn G H, et al. Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agricultural and Biological Chemistry, 1991, 55(9): 2359-2365.

[15] Iizumi T, Nakamura K, Shimada Y, et al. Cloning, nucleotide sequencing, and expression in Escherichia coli of a lipase and its activator genes from Pseudomonas sp. KWI-56. Agricultural and Biological Chemistry, 1991, 55(9): 2349-2357.

[16] Chihara-Siomi M, Yoshikawa K, Oshima-Hirayama N, et al. Purification, molecular cloning, and expression of lipase from Pseudomonas aeruginosa. Archives of Biochemistry and Biophysics, 1992, 296(2): 505-513.

[17] Choo D W, Kurihara T, Suzuki T, et al. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Applied and Environmental Microbiology, 1998, 64(2): 486-491.

[18] Rashid N, Shimada Y, Ezaki S, et al. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Applied and Environmental Microbiology, 2001, 67(9): 4064-4069.

[19] Kojima Y, Kobayashi M, Shimizu S. A novel lipase from Pseudomonas fluorescens HU380: gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. Journal of Bioscience and Bioengineering, 2003, 96(3): 242-249.

[20] Tanaka D, Yoneda S, Yamashiro Y, et al. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Applied Biochemistry and Biotechnology, 2012, 168(2): 327-338.

[21] Hardeman F, Sjoling S. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiology Ecology, 2007, 59(2): 524-534.

[22] Khan M, Jithesh K. Expression and purification of organic solvent stable lipase from soil metagenomic library. World Journal of Microbiology and Biotechnology, 2012, 28(6): 2417-2424.

[23] Jiang Z, Zheng Y, Luo Y, et al. Cloning and expression of a novel lipase gene from Pseudomonas fluorescens B52. Molecular Biotechnology, 2005, 31(2): 95-101.

[24] Luo Y, Zheng Y, Jiang Z, et al. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Applied Microbiology and Biotechnology, 2006, 73(2): 349-355.

[25] Lee J H, Ashby R D, Needleman D S, et al. Cloning, sequencing, and characterization of lipase genes from a polyhydroxyalkanoate (PHA)-synthesizing Pseudomonas resinovorans. Applied Microbiology and Biotechnology, 2012, 96(4): 993-1005.

[26] Zhang J, Zeng R. Molecular cloning and expression of a cold-adapted lipase gene from an antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Marine Biotechnology, 2008, 10(5): 612-621.

[27] Yang J, Zhang B, Yan Y. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Applied Biochemistry and Biotechnology, 2009, 159(2): 355-365.

[28] Bofill C, Prim N, Mormeneo M, et al. Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie, 2010, 92(3): 307-316.

[29] Wu X, You P, Su E, et al. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnology, 2012, 12: 58.

[30] Kim J, Jang S H, Lee C. An organic solvent-tolerant alkaline lipase from cold-adapted Pseudomonas mandelii: cloning, expression, and characterization. Bioscience Biotechnology and Biochemistry, 2013, 77(2): 320-323.

[31] Zha D, Xu L, Zhang H, et al. Molecular identification of lipase LipA from Pseudomonas protegens Pf-5 and characterization of two whole-cell biocatalysts Pf-5 and Top10lipA. Journal of Microbiology and Biotechnology, 2014, 24(5): 619-628.

[32] Rosenau F, Jaeger K E. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie, 2000, 82(11): 1023-1032.

[33] Krzeslak J, Gerritse G, van Merkerk R, et al. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system. Applied and Environmental Microbiology, 2008, 74(5): 1402-1411.

[34] Abdou L, Chou H T, Haas D, et al. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. Journal of Bacteriology, 2011, 193(11): 2784-2792.

[35] Krzeslak J, Papaioannou E, van Merkerk R, et al. Lipase A gene transcription in Pseudomonas alcaligenes is under control of RNA polymerase sigma54 and response regulator LipR. FEMS Microbiology Letters, 2012, 329(2): 146-153.

[36] Reimmann C, Beyeler M, Latifi A, et al. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Molecular Microbiology, 1997, 24(2): 309-319.

[37] Heurlier K, Williams F, Heeb S, et al. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2004, 186(10): 2936-2945.

[38] Lalaouna D, Fochesato S, Sanchez L, et al. Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Applied and Environmental Microbiology, 2012, 78(6): 1658-1665.

[39] Zha D, Xu L, Zhang H, et al. The two-component GacS-GacA system activates lipA translation by RsmE but not RsmA in Pseudomonas protegens Pf-5. Applied and Environmental Microbiology, 2014, 80(21): 6627-6637.

[40] Mccarthy C N, Woods R G, Beacham I R. Regulation of the aprX-lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ. FEMS Microbiology Letters, 2004, 241(2): 243-248.

[41] Yang Z, Lu C D. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. Journal of Bacteriology, 2007, 189(11): 3945-3953.

[42] Mavrodi D V, Paulsen I T, Ren Q, et al. Genomics of Pseudomonas fluorescens Pf-5. Dordrecht: Springer Netherlands, 2007: 3-30.

[43] 张爱军. 荧光假单胞菌脂肪酶的克隆表达、酶学性质及其在手性拆分中的应用研究. 长春:吉林大学, 生命科学学院,2008. Zhang A. Cloning, Expression and Characterization of a Pseudomonas fluorescens Lipase and Its Applications in Resolution of Chiral Compounds. Changchun:Jilin University, College of Life Science,2008.

[44] Ahn J H, Pan J G, Rhee J S. Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp.. Applied and Environmental Microbiology, 2001, 67(12): 5506-5511.

[45] Song J K, Oh J Y, Eom G T, et al. High-level secretion of Pseudomonas fluorescens type I secretion system-dependent lipase in Serratia marcescens. Journal of Biotechnology, 2007, 130(3): 311-315.

[46] Gerritse G, Ure R, Bizoullier F, et al. The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production. Journal of Biotechnology, 1998, 64(1): 23-38.

[47] Martinez A, Ostrovsky P, Nunn D N. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Molecular Microbiology, 1999, 34(2): 317-326.

[48] Omori K, Isoyama-Tanaka J, Ihara F, et al. Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. Journal of Bioscience and Bioengineering, 2005, 100(3): 323-330.

[49] Madan B, Mishra P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Applied Microbiology and Biotechnology, 2010, 85(3): 597-604.

[50] Peng R, Lin J, Wei D. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase. Applied Biochemistry and Biotechnology, 2011, 165(3-4): 926-937.

[51] Lee S H, Choi J I, Han M J, et al. Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnology and Bioengineering, 2005, 90(2): 223-230.

[52] Lee S H, Lee S Y, Park B C. Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Applied and Environmental Microbiology, 2005, 71(12): 8581-8586.

[53] Jung H, Ko S, Ju S, et al. Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities. Journal of Molecular Catalysis B: Enzymatic, 2003, 26(3): 177-184.

[54] Jung H, Kwon S, Pan J. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnology, 2006, 6: 23.

[55] 王海燕. 荧光假单孢菌脂肪酶基因的克隆、改造及其在毕赤酵母中的表达. 北京:中国农业科学院, 饲料研究所,2006. Wang H. Cloning, Modifying and Expression in Pichia pastrois of a Lipase Gene from Pseudomonas fluorescens. Beijing:Chinese Academy of Agricultural Sciences, Feed Research Institute,2006.

[56] Boston M, Requadt C, Danko S, et al. Structure and function engineered Pseudomonas mendocina lipase. Methods in Enzymology, 1997, 284: 298-317.

[57] Sibille N, Favier A, Azuaga A I, et al. Comparative NMR study on the impact of point mutations on protein stability of Pseudomonas mendocina lipase. Protein Science, 2006, 15(8): 1915-1927.

[58] Nardini M, Lang D A, Liebeton K, et al. Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. Journal of Biological Chemistry, 2000, 275(40): 31219-31225.

[59] Angkawidjaja C, You D, Matsumura H, et al. Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation. FEBS Letters, 2007, 581(26): 5060-5064.

[60] Kuwahara K, Angkawidjaja C, Matsumura H, et al. Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability. Protein Engineering Design and Selection, 2008, 21(12): 737-744.

[61] Angkawidjaja C, Matsumura H, Koga Y, et al. X-ray crystallographic and MD simulation studies on the mechanism of interfacial activation of a family I.3 lipase with two lids. Journal of Molecular Biology, 2010, 400(1): 82-95.

[62] 刘畅. 蛋白质工程和溶剂工程改变嗜热酯酶的底物特异性和活性. 长春:吉林大学, 生命科学学院,2011. Liu C. Improve Substrate Specificity and Activity of Hyper-thermophilic Esterase by Protein and Solvent Engineering. Changchun:Jilin University, College of Life Science,2011.

[63] 林瑞凤,舒正玉,薛龙吟,等. 微生物脂肪酶蛋白质工程. 中国生物工程杂志, 2009, 29(9): 108-113. Lin R, Shu Z, Xue L, et al. Protein engineering of microbial lipases. China Biotechnology, 2009, 29(9): 108-113.

[64] Santarossa G, Lafranconi P G, Alquati C, et al. Mutations in the "lid" region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Letters, 2005, 579(11): 2383-2386.

[65] 李强,施碧红,罗晓蕾,等. 蛋白质工程的主要研究方法和进展. 安徽农学通报, 2009, 15(5): 47-48. Li Q, Shi B, Luo X, et al. Advances in the techniques of protein engineering.Anhui Agricultural Science Bulletin, 2009, 15(5): 47-48.

[66] Fujii R, Nakagawa Y, Hiratake J, et al. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Engineering Design and Selection, 2005, 18(2): 93-101.

[67] Carballeira J D, Krumlinde P, Bocola M, et al. Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene. Chemical Communications, 2007, (19): 1913-1915.

[68] Nakagawa Y, Hasegawa A, Hiratake J, et al. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases. Protein Engineering Design and Selection, 2007, 20(7): 339-346.

[1] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[2] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[3] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[4] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[5] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[6] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[7] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[8] Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases[J]. China Biotechnology, 2018, 38(11): 51-58.
[9] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[10] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[11] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.
[12] ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping. Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis[J]. China Biotechnology, 2015, 35(9): 42-49.
[13] YANG Jiang-ke, MAO Ling, ZHOU Wen-jing, CHEN Jiang-shan, HU Chen. De Novo Design and High-throughput Screening Strategy Achieved Over Expression of Yarrowia lipolytica Lipase YLL in Pichia patoris[J]. China Biotechnology, 2014, 34(8): 54-60.
[14] LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa. Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports[J]. China Biotechnology, 2014, 34(4): 78-84.
[15] SU Yan-nan, XUE Zheng-lian, CHEN Tao, MA Qi-ya. The Optimized Phospholipase A1 Gene Expression of Serratia marcescens PL-06 in E. coli[J]. China Biotechnology, 2013, 33(7): 36-42.