Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (5): 49-54    DOI: 10.13523/j.cb.20150507
    
Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204
XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang
Hubei Cooperative Innovation Center for Industrial Fermentation, Key Laboratory of Fermentation Engineering Ministry of Education, Hubei University of Technology, Wuhan 430068, China
Download: HTML   PDF(538KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Previous studies, a recombinant E.coli WL204 was constructed,which contained a chromosomal integrated ldhL gene and possesses the capability of homofermentation of L-lactic acid using xylose as substrate. Wastepaper was selected as feedstock to evaluate the fermentative production of lactic acid by recombinant E.coli WL204.The wastepaper chips were treated with 1:6-1:14(w/v)H2SO4, and then incubated 60 h at 50℃ with cellulase. The resultant hydrolyzates were detoxified with dried Ca(OH)2, which could remove most of furfural and HMF. Fermentation of the detoxified hydrolyzate of wastepaper with E.coli WL204 produced 31g L-lactic acid from 100g dry wastepaper and the lactic acid yield coefficient was 79%.These results demonstrated that WL204 has the potential for homofermentative production of L-lactic acid using cellulosic biomass derived substrates.



Key wordsEscherichia coli      L-lactic acid      Waste paper      Lignocellulose     
Received: 04 March 2015      Published: 25 May 2015
ZTFLH:  Q815  
Cite this article:

XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204. China Biotechnology, 2015, 35(5): 49-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150507     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I5/49


[1] Gullón B, Yáñez R, Alonso J L, et al. L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 2008, 99 (2): 308-319.

[2] John R P, Anisha G S, Nampoothiri K M, et al. Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv, 2009, 27 (2): 145-152.

[3] Narita J, Nakahara S, Fukuda H, et al. Efficient production of L-(+)-lactic acid from raw starch by Streptococcus bovis 148. Journal of Bioscience and Bioengineering, 2004, 97 (6): 423-425.

[4] Tanaka T, Hoshina M, Tanabe S, et al. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol, 2006, 97 (2): 211-217.

[5] Kojima Y, Yoon S L. Improved enzymatic hydrolysis of waste paper by ozone pretreatment. Journal of Material Cycles and Waste Management, 2008, 10(2): 134-139.

[6] Zhang Y, Chen X, Luo J, et al. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresource Technology, 2014, 158(2): 396-399.

[7] Zhang Y, Chen X, Qi B, et al. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresource Technology, 2014, 163(4): 160-166.

[8] 张晶晶,万金泉. 废纸与葡萄糖的亚临界水解动力学. 中华纸业,2011,32(6):46-50. Zhang J J,Wan J Q. Subcritical hydrolytic dynamics of waste paper and glucose. China Pul P& Paper Industry,2011,32(6):46-50.

[9] Budhavaram N K, Fan Z. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 2009, 100(23): 5966-5972.

[10] Park E Y, Anh PN, Okuda N. Bioconversion of waste office paper to L (+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresource Technology, 2004, 93(1): 77-83.

[11] Ouyang J, Ma R, Zheng Z, et al. Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 2013,135:475-480.

[12] Marques S, Santos J A, Gírio F M, et al. Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering Journal,2008, 41(3): 210-216.

[13] Saito K, Hasa Y, Abe H. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Journal of Bioscience and Bioengineering, 2012, 114(2): 166-169.

[14] Zhao J, Xu L, Wang Y, et al. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microbial Cell Factories, 2013, 12 (1): 1-57.

[15] Wang Y, Manow R, Finan C, et al. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 1371-1377.

[16] Sluiter A, Hames B, Ruiz R, et al. Laboratory Analytical Procedure: Determination of Structural Carbohydrates and Lignin in Biomass. Golden, Colorado: National Renewable Energy Laboratory, 2011: 1-15.

[17] 侯玉林. 不同预处理对再生植物纤维结构及水解反应影响的研究. 广州:华南理工大学, 环境科学与工程学院, 2011. Hou Y L. Effect of Pretreatments on Structure and Hydrolysis of Recycled Fibers. Guangzhou:South China University of Technology, College of Environmental Science and Engineering, 2011.

[18] 黄峰. 大肠杆菌利用水稻脆性秸秆发酵产乙醇的研究. 武汉:湖北工业大学,生物工程学院,2014. Huang F.Study on Fermentation of Cellulosic Ethanol by Escherichia coli Using Brittle Rice Straw.Wuhan:Hubei University of Technology,College of Biological Engineering, 2014.

[19] Gutiérrez T, Ingram L O, Preston J F. Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. Journal of Biotechnology, 2006, 121 (2): 154-164.

[20] Mazumdar S, Bang J, Oh M K. L-Lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2014, 172(4): 1938-1952.

[21] Wang Y, Li K, Huang F, et al. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn stee Pliquor without additional nutrients. Bioresource Technology, 2013, 148(8): 394-400.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[3] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[4] MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms[J]. China Biotechnology, 2017, 37(6): 124-133.
[5] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[6] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[7] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[8] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[9] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[10] CAO Chang-hai, ZHANG Quan, GUAN Hao, WANG Ling-min, QIAO Kai, TONG Ming-you . Research Progress of Enhancing Enzymatic Saccharification Efficiency of Lignocellulose[J]. China Biotechnology, 2015, 35(8): 126-136.
[11] GUO Zhao-lai, BAI Xue-gui, YAN Jin-ping, CHEN Xuan-qin, LI Kun-zhi, XU Hui-ni. Prokaryotic Expression and Function Analysis of SoHb from Spinach[J]. China Biotechnology, 2015, 35(4): 54-59.
[12] QIAN Xin, GUO Hong-yan, ZHOU Qing-feng. Construction of 4-Hydroxyphenylacetate-3-hydroxylase A Expression Strain and Its Biotransformation Effect on Hydroxytyrosol[J]. China Biotechnology, 2015, 35(3): 56-60.
[13] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.
[14] WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol[J]. China Biotechnology, 2014, 34(2): 71-77.
[15] LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose[J]. China Biotechnology, 2014, 34(12): 91-96.