Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (4): 92-97    DOI: 10.13523/j.cb.20150414
    
Application of Synthetic Biology in Research and Development of the Secondary Metabolites from Streptomyces
LI Xiao-mei, LIN Chun-yan, PANG Ai-ping, LI Xiao-bo, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University; Key Laboratory of Systems Bioengineering, Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(976KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Streptomyces, a kind of Gram-positive bacteria, can produce lots of secondary metabolites which are widely used in the pharmaceutical industry, food processing and agriculture production. Genetic manipulation for Streptomyces is the foundation for the discovery and development of new secondary metabolites. The emergence of synthetic biology opens a new window for researches in Streptomyces and achievements on cloning and assembly of the biosynthetic gene cluster, the chassis cell design and the fitness were reviewed.



Key wordsSynthetic biology      Streptomyces      Secondary metabolites      Biosynthetic gene cluster      Cloning and assembly      Minimized genome      Chassis cell     
Received: 04 January 2015      Published: 25 April 2015
ZTFLH:  Q819  
Cite this article:

LI Xiao-mei, LIN Chun-yan, PANG Ai-ping, LI Xiao-bo, ZHAO Guang-rong. Application of Synthetic Biology in Research and Development of the Secondary Metabolites from Streptomyces. China Biotechnology, 2015, 35(4): 92-97.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150414     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I4/92


[1] Singh V. Recent advancements in synthetic biology: Current status and challenges. Gene, 2014, 535 (1): 1-11.

[2] 张春霆.合成生物学研究的进展.中国科学基金, 2009, 23 (2): 65-69. Zhang C T. Advances in synthetic biology. Bulletin of National Natural Science Foundation of China, 2009, 23 (2): 65-69.

[3] Fu J, Bian X Y, Hu S B, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nature Biotechnology, 2012, 30 (5): 440-448.

[4] Su C, Zhao X Q, Wang H N, et al. Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids. Gene, 2014, 554 (2): 233-240.

[5] Shao Z Y, Zhao H M. DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 2012, 517: 203-224.

[6] Shao Z Y, Luo Y Z, Zhao H M. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Molecular BioSystems, 2011, 7 (4): 1056-1059.

[7] Luo Y, Huang H, Liang J, et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nature Communications, 2013, 4 (2894): 1-15.

[8] Yamanaka K, Reynolds K A, Kersten R D, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proceedings of the National Academy of Sciences (USA), 2014, 111 (5): 1957-1962.

[9] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proceedings of the National Academy of Sciences, 2010, 107 (6): 2646-2651.

[10] Komatsu M, Komatsu K, Koiwai H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. American Chemical Society Synthetic Biology, 2013, 2 (7): 384-396.

[11] Ikeda H, Kazuo S Y, Omura S. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. Journal of Industrial Microbiology Biotechnology, 2014, 41 (2): 233-250.

[12] Gomez-Escribano J P, Bibb M J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology, 2011, 4 (2): 207-215.

[13] Zhou M, Jing X Y, Xie P F, et al. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. Federation of European Microbiological Societies Microbiology Letters, 2012, 333 (2): 169-179.

[14] Dange V, Westrich L, Smith M C, et al. Use of an inducible promoter for antibiotic production in a heterologous host. Applied Microbiology and Biotechnology, 2010, 87 (1): 261-269.

[15] Liu H B, Jiang H, Haltli Bradley, et al. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC. Journal of Natural Products, 2009, 72 (3): 389-395.

[16] Du D, Zhu Y, Wei J, et al. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Applied Microbiology and Biotechnology, 2013, 97 (14): 6383-6396.

[17] Wang W, Li X, Wang J, et al. An engineered strong promoter for streptomycetes. Applied and Environmental Microbiology, 2013, 79 (14): 4484-4492.

[18] Siegl T, Tokovenko B, Myronovskyi M, et al. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metabolic Engineering, 2013, 19: 98-106.

[19] Zhao X Q, Gust B, Heide L. S-adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Archives of Microbiology, 2010, 192 (4): 289-297.

[20] Zhao X J, Wang Q X, Guo W Q, et al. Overexpression of metK shows different effects on avermectin production in various Streptomyces avermitilis strains. World Journal of Microbiology and Biotechnology, 2013, 29 (10): 1869-1875.

[21] Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Applied Microbiology and Biotechnology, 2014, 98 (18): 7735-7746.

[22] Li L, Wu J, Deng Z X, et al. Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S producing strain for ease of genetic manipulation. Applied and Environmental Microbiology, 2013, 79 (7): 2349-2357.

[23] Isaacs F J, Carr P A, Wang H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 2011, 333 (6040): 348-353.

[24] Mali P, Esvelt K M, Church G M. Cas 9 as a versatile tool for engineering biology. Nature Methods, 2013, 10 (10): 957-963.

[25] Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344 (6179): 55-58.

[26] Xu P, Li L, Zhang F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences, 2014, 111 (31): 11299-11304.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[9] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[10] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[11] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[12] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[13] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[14] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[15] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.