Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (1): 104-110    DOI: 10.13523/j.cb.20150115
    
Advance in Research on HA Biosynthesis and Gene Engineering
JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
Download: HTML   PDF(650KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Hyaluronic acid is a mucopolysaccharide composed of disaccharides unit of N-acetyl glucosamine and glucuronic acid polymerization. Now it has been widely used in medicine, cosmetics and food additives. Microbial fermentation is the most effective way to the current production of hyaluronic acid. Hyaluronic acid synthesis methods were Leloir way in organisms. Hyaluronic acid synthesis operon composed by hyaluronan synthase gene, UDP-glucose dehydrogenase gene and UDP-glucose pyrophosphorylase gene, it's expression is regulated by the CovS/CovR and LuxS, etc contro systeml. With the rapid development of molecular biology technology and the deepening of the understanding of HA synthesis related genes, from improve safety, increase production and regulation HA weight three aspects, people through genetic engineering means to build a high yield, security, a range of molecular weight of hyaluronic acid producing strains. Hyaluronic acid biosynthesis pathway, related gene expression regulation and production strain molecular biology transformation strategy and the research progress were summarized and prospected.



Key wordsHyaluronic acid      Molecular biology      Genetic engineering      Biosynthesis pathway     
Received: 29 October 2014      Published: 25 January 2015
ZTFLH:  Q78  
Cite this article:

JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering. China Biotechnology, 2015, 35(1): 104-110.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150115     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I1/104


[1] Chong B F, Nielsen L K. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochemical Engineering Journal, 2003, 16(2):153-162.

[2] Jagannath W, Ramachandran K B. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochemical Engineering Journal, 2010, 48(2):148-158.

[3] Liu L, Du G C, Chen J, et al. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus. Bioresource Technology, 2009, 100(1):362-367.

[4] Prasad S B, Jayaraman G, Ramachandran K B. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl Microbiol Biotechnol, 2010, 86(1):273-283.

[5] Hoffmann J, Altenbuchner J. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight. Journal of Applied Microbiology, 2014, 117(3):663-678.

[6] Blank L M, Hugenholtz P, Nielsen L K. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. J Mol Evol, 2008, 67(1):13-22.

[7] 马晓菁. 致犊牛肺炎多杀性巴氏杆菌的分离鉴定及部分生物学特性研究. 石河子:石河子大学, 动物科技学院,2010:2-4. Ma X J. Isolation and Identification and Parts of Biological Characteristics of Pasteurella multocida Inducing Pneumonia of Calf. Shihezi:Shihezi University,College of Animal Science & Technology, 2010:2-4.

[8] Jong A, Wu C H, Chen H M, et al. Identification and characterization of CPS1as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryotl Cell, 2007, 6(8):1486-1496.

[9] Young O S, Budzik J M, Garufi G, et al. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol Microbiol, 2011, 80(2): 455-470.

[10] Alberti S, Ashbaugh C D, Wessels M R. Structure of the has operon promoter and regulation of hyaluronic acid capsule expression in group A streptococcus. Molecular Microbiology,1998,28(2):343-353.

[11] Dougherty B A, Rijn I V D. Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A streptococci. The Journal of Biological Chemist, 1994,269(1):169-175.

[12] Heath A, Dirita V J, Barg N L, et al. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S,and pyrogenic exotoxin B. Infection And Immunity,1999, 67(10):5298-5305.

[13] Liang Z, Zhang Y L, Agrahari G, et al. A natural inactivating mutation in the CovS component of the CovRS regulatory operon in a pattern D Streptococcal pyogenes Strain influences virulence-associated genes. The Journal of Biological Chemistry, 2013,288(9): 6561-6573.

[14] Federle M J, Scott J R. Identification of binding sites for the group A streptococcal global regulator CovR. Molecular Microbiology, 2002,43(5):1161-1172.

[15] Kreikemeyer B, McIver K S, Podbielski A. Virulence factor regulation and regulatory networks in Streptococcus pyogenesand their impact on pathogen-host interactions. Trends in Microbiology, 2003,11(5):224-232.

[16] Roberts S A, Churchward G G, Scott J R. Unraveling the regulatory network in Streptococcus pyogenes: the global response regulator CovR represses rivR directly. Journal of Bacteriology, 2007,189(4):1459-1463.

[17] Trevino J, Perez N, Ramirez P E, et al. CovS simultaneously activates and inhibits the CovR mediated repression of distinct subsets of group A streptococcus virulence factor-encoding genes. Infection and Immunity, 2009,77(8):3141-3149.

[18] Trevino J, Liu Z Y, Cao T N, et al. RivR is a negative regulator of virulence factor expression in Group A streptococcus. Infection and Immunity, 2013,81(1):364-372.

[19] Kwinn L A, Khosravi A, Aziz R K, et al. Genetic characterization and virulence role of the RALP3/LSA locus upstream of the streptolysin S operon in invasive M1T1 group A streptococci. Journal Bacteriology, 2007,189(4):1322-1329.

[20] Kreikemeyer B, Nakata M, Koller T, et al. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epf sagA pathogenicity region. Infection and Immunity, 2007, 75(12):5698-5710.

[21] Malke H, Steiner K, McShan W M, et al. Linking the nutritional status of Streptococcus pyogenesto alteration of transcriptional gene expression:the action of CodY and RelA. International Journal of Medical Microbiology, 2006, 296(4 5):259-275.

[22] Shelburne S A, Sumby P, Sitkiewicz I, et al. Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. PNAS, 2005, 102(44):16037-16042.

[23] Kang S O, Wright J O, Tesorero R A, et al.Thermoregulation of capsule production by Streptococcus pyogenes. PLoS One, 2012,7(5):1-15.

[24] Marouni M J, Sela S. The luxS Gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infection and Immunity, 2003, 71(10):5633-5639.

[25] Weigel P H, DeAngelis P L. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem, 2007, 282:36777-36781.

[26] Jing W, DeAngelis P L. Dissection of the two transferase activities of the pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology, 2000,10(9):883-889.

[27] Thomas N K, Brown T J. ABC transporters do not contribute to extracellular translocation of hyaluronan in human breast cancer in vitro. Experimental Cell Research, 2010, 316(7):1241-1253.

[28] Chong B F, Blank L M, Mclaughlin R, et al.Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 2005, 64(4): 341-351.

[29] 范红结, 陆承平. 链球菌兽疫亚种毒力因子. 国人兽共患病学报, 2006,22(3):279-281. Fan H J, Lu C P. Streptococcus equi ssp. zooepidemicus virulence factor. Chinese Journal of Zoonoses, 2006,22(3):279-281.

[30] 李尧, 蓝小玲, 李学如,等. 一种构建马链球菌兽疫亚种血红素受体基因缺失突变株的方法.微生物学报, 2010, 50(6):822-827. Li Y, Lan X L, Li X R, et al. Construction of in-frame deletion streptococcal hemoprotein receptor gene mutant in Streptococcus equi subsp. zooepidemicus. Acta Microbilogica Sinica, 2010,50(6):822-827.

[31] Mao Z, Chen R R. 土壤杆菌重组合成透明质酸.食品与药品, 2013, 15(3):4-6. Mao Z,Chen R R. Agrobacterium restructuring hyaluronic acid synthesis. Food and Drug, 2013,15(3):4-6.

[32] Widner B, Behr R, Dollen S V, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol, 2005,71(7):3747-3752.

[33] Mao Z C, Shin H D, Chen R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl Microbiol Biotechnol, 2009, 84(1):63-69.

[34] Izawa N, Serata M, Sone T, et al. Hyaluronic acid production by recombinant Streptococcus thermophilus. Journal of Bioscience and Bioengineering, 2011, 111(6):665-670.

[35] Simmons V L T, Kempner E S, Baggenstoss B A, et al. The Active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecule. J Biol Chem, 1998, 273(40):26100-26109.

[36] Weigel P H, Kyossev Z, Torres L C. Phospholipid dependence and liposome reconstitution of purified hyaluronan synthase. J Biol Chem, 2006, 281(48):36542-36551.

[37] Simmons V L T, Baron C A, Weigel P H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry, 2004, 43(28): 9234-9242.

[38] Weigel P H, Baggenstoss B A. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology, 2012, 22(10):1302-1310.

[39] Kumari K, Weigel P H. Identification of a membrane-localized cysteine cluster near the substrate binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology, 2005, 15(5):529-539.

[40] 张晋宇. 表达phbCAB基因对兽疫链球菌中乳酸及透明质酸产量的影响. 北京:清华大学,生命科学学院,2005: 52-55. Zhang J Y. Effect of Expressing PHB Synthesis Genes phbCAB Gene on Production of Latate and Hyaluronic Acid by Streptococcus zooepidemicus. Beijing, School of Life Science, Tsinghua University, 2005: 52-55.

[41] Wu X M, Gao H J, Tian G, et al. Transformation of Streptococcus zooepidemicus with genes responsible for polyhydroxybutrate synthesis.Tsinghua Science and Technology, 2002,7(4):387-392.

[42] Chong B F, Blank L M, Mclaughlin R, et al. Microbial hyaluronic acid production. Appl Microbiol Biotechnol, 2005, 66(4): 341-351.

[43] Heldermon C, Kumari K, Simmons V L T, et al. Streptococcal hyaluronan synthases and the synthesis of designer hyaluronan. Elsevier Science, 2009, 7(1):41-50.

[44] Pummill P E, DeAngelis P L. Alteration of polysaccharide size distribution of a vertebrate hyaluronan synthase by mutation.J Biol Chem,2003, 278(22):19808-19814.

[45] Jing W, DeAngelis P L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem, 2004, 279:42345-42349.

[46] Medina A P, Lin J L, Weigel P H. Hyaluronan synthase mediates dye translocation across liposomal membranes. BMC Biochemistry, 2012, 13(2):1-9.

[47] Kumari K, Baggenstoss B A, Parker A L, et al. Mutation of two intramembrane polar residues conserved within the hyaluronan synthase family alters hyaluronan product size. J Biol Chem, 2006, 281(17):11755-11760.

[48] Sheng J Z, Ling PX, Zhu X Q, et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis:a case study of the regulation mechanismof hyaluronic acid polymer. J Appl Microbiol, 2009, 107(1):136-144.

[49] Chen W Y, Marcellin E, Hung J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. The Journal of Biological Chemstry, 2009, 284(27):18007-18014.

[50] Yu H, Stephanopoulos G. Metabolic engineering of Escherichiacoli forbiosynthesis of hyaluronic acid. Metab.Eng, 2008, 10(1):24-32.

[51] Marcellin E, Chen W Y, Nielsen L K. Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcusequi subsp. Zooepidemicus. Metabolic Engineering, 2010,12(1):62-69.

[1] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[2] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[3] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[4] ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology[J]. China Biotechnology, 2020, 40(4): 84-91.
[5] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[6] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[7] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[8] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[9] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[10] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[11] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[12] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[13] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[14] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[15] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.