Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 88-96    DOI: 10.13523/j.cb.20140814
    
Red-mediated Scarless Recombination:Strategies and Applications
LIU Lu-gang1, JI Xiao-jun1, SHEN Meng-qiu1, TONG Ying-jia1, HUANG He1,2
1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
Download: HTML   PDF(872KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Red recombination technology is developing rapidly, and has been widely used in Escherichia coli gene modification, such as deletions, insertions and substitutions. Compared with the traditional scarred recombination, the scarless recombination technology based on Red recombination is able to make more precise, rapid and efficient modification of targeted genes without the introduction of any exogenous sequences in the genome. From the basic mechanism of Red recombination,the principles and operation strategies about scarless recombination for Escherichia coli in recent years were reviewed, and also the advantages and disadvantages were analyzed. Finally, the applications of scarless recombination technology were introduced.



Key wordsRed recombination      Scarless recombination      Strategies      Applications     
Received: 04 May 2014      Published: 25 August 2014
ZTFLH:  Q789  
Cite this article:

LIU Lu-gang, JI Xiao-jun, SHEN Meng-qiu, TONG Ying-jia, HUANG He. Red-mediated Scarless Recombination:Strategies and Applications. China Biotechnology, 2014, 34(8): 88-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140814     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/88


[1] Bailey J E. Toward a science of metabolic engineering.Science, 1991, 252(5013): 1668-1675.

[2] Yu B J, Kang K H, Lee J H, et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Research, 2008, 36(14): e84.

[3] Muyrers J P P, Zhang Y, Testa G, et al. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research, 1999, 27(6): 1555-1557.

[4] Zhang Y, Muyrers J P, Testa G, et al. DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnology, 2000, 18(12): 1314-1317.

[5] Poteete A R. What makes the bacteriophage λ Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiology Letters, 2001, 201(1): 9-14.

[6] Copeland N G, Jenkins N A, Court D L. Recombineering: a powerful new tool for mouse functional genomics. Nature Reviews Genetics, 2001, 2(10): 769-779.

[7] Yu D, Ellis H M, Lee E C, et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5978-5983.

[8] Ellis H M, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(12): 6742-6746.

[9] Mythili E, Kumar K A, Muniyappa K. Characterization of the DNA-binding domain of β protein, a component of phage λ Red-pathway, by UV catalyzed cross-linking. Gene, 1996, 182(1): 81-87.

[10] Karakousis G, Ye N, Li Z, et al. The beta protein of phage λ binds preferentially to an intermediate in DNA renaturation. Journal of Molecular Biology, 1998, 276(4): 721-731.

[11] Murphy K C. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. Journal of Bacteriology, 1991, 173(18): 5808-5821.

[12] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.

[13] Anderson J C, Clarke E J, Arkin A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. Journal of Molecular Biology, 2006, 355(4): 619-627.

[14] Tischer B K, von Einem J, Kaufer B, et al. Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2): 191.

[15] Haldimann A, Wanner B L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. Journal of Bacteriology, 2001, 183(21): 6384-6393.

[16] Chiang C J, Chen PT, Chao Y P. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnology and Bioengineering, 2008, 101(5): 985-995.

[17] St-Pierre F, Cui L, Priest D G, et al. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2013, 2(9): 537-541.

[18] Lalioti M D, Heath J K. A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coli. Nucleic Acids Research, 2001, 29(3): e14.

[19] Zhang X, Jantama K, Moore J C, et al. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355-366.

[20] Li X, Thomason L C, Sawitzke J A, et al. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Research, 2013, 41(22): e204.

[21] Sawitzke J A, Thomason L C, Costantino N, et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods in Enzymology, 2007, 421: 171-199.

[22] Pelicic V, Reyrat J M, Gicquel B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. Journal of Bacteriology, 1996, 178(4): 1197-1199.

[23] Donnenberg M S, Kaper J B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infection and Immunity, 1991, 59(12): 4310-4317.

[24] Warming S, Costantino N, Jenkins N A, et al. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 2005, 33(4):e36.

[25] Wong Q N, Ng V C, Lin M C, et al. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Research, 2005, 33(6): e59.

[26] DeVito J A. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Research, 2008, 36(1): e4.

[27] Jamsai D, Orford M, Nefedov M, et al. Targeted modification of a human β-globin locus BAC clone using GET Recombination and an I-SceI counterselection cassette. Genomics, 2003, 82(1): 68-77.

[28] Herring C D, Glasner J D, Blattner F R. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene, 2003, 311: 153-163.

[29] Lee D J, Bingle L E H, Heurlier K, et al. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiology, 2009, 9(1): 252.

[30] Carroll D. Genome engineering with targetable nucleases. Annual Review of Biochemistry, 2014, 83(1): 14.1-14.19.

[31] Tischer B K, von Einem J, Kaufer B, et al. Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2): 191.

[32] Kolisnychenko V, Plunkett G, Herring C D, et al. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4): 640-647.

[33] Fehér T, Karcagi I, Györfy Z, et al. Scarless engineering of the Escherichia coli genome. Microbial Gene Essentiality: Protocols and Bioinformatics. New Jersey: Humana Press, 2008. 251-259.

[34] 方宏清, 吴涛, 孙旭等. 一种工程菌及其在生产紫槐-4, 11-二烯中的应用. CN 102978147A, 2013. Fang H Q, Wu T, Sun X, et al. An engineered bacteria and its applications in amorpha-4, 11-diene production. CN 102978147A, 2013.

[35] Kuhlman T E, Cox E C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010, 38(6): e92.

[36] Mizoguchi H, Mori H, Fujio T. Escherichia coli minimum genome factory. Biotechnology and Applied Biochemistry, 2007, 46(3): 157-167.

[37] Pósfai G, Plunkett G, Fehér T, et al. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044-1046.

[38] Hashimoto M, Ichimura T, Mizoguchi H, et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Molecular Microbiology, 2005, 55(1): 137-149.

[39] Mizoguchi H, Sawano Y, Kato J, et al. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Research, 2008, 15(5): 277-284.

[40] Lee J H, Sung B H, Kim M S, et al. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microbial Cell Factories, 2009, 8(2): 2.

[41] Hirokawa Y, Kawano H, Tanaka-Masuda K, et al. Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. Journal of Bioscience and Bioengineering, 2013, 116(1): 52-58.

[42] Wang H H, Isaacs F J, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898.

[43] Isaacs F J, Carr PA, Wang H H, et al. Precise manipulation of chromosomes in vivo enablesgenome-wide codon replacement. Science, 2011, 333(6040): 348-353.

[44] Warner J R, Reeder PJ, Karimpour-Fard A, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nature Biotechnology, 2010, 28(8): 856-862.

[45] Jantama K, Zhang X, Moore J C, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881-893.

[46] Shi A, Zhu X, Lu J, et al. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metabolic Engineering, 2013, 16: 1-10.

[47] Zhao J, Liu Y, Li Q, et al. Modulation of isoprenoid gene expression with multiple regulatory parts for improved beta-carotene production. Chinese Journal of Biotechnology, 2013, 29(1): 41-55.

[48] Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metabolic Engineering, 2013, 17: 42-50.

[49] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678-12683.

[50] Braatsch S, Helmark S, Kranz H, et al. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine tuning. BioTechniques, 2008, 45(3): 335-337.

[51] Sandoval N R, Kim J Y, Glebes T Y, et al. Strategy for directing combinatorial genome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10540-10545.

[52] 戴冠苹, 孙涛, 苗良田等. RBS文库调控重组大肠杆菌β-胡萝素合成途径关键基因提高β-胡萝卜素合成能力. 生物工程学报, 2014, 30(6): 1-11. Dai G P, Sun T, Miao L T, et al. Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production. Chinese Journal of Biotechnology, 2012, 109(26): 10540-10545.

[1] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[2] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[3] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[4] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.
[5] MA Huai-yuan, HUANG Fei, BAI Lin-han. Accumulation of Aspartic Acid in Escherichia coli W3110 is Improved by Homologous Recombination[J]. China Biotechnology, 2014, 34(06): 61-67.
[6] GU Yuan-xing, WANG Meng, LIU Wen-qian, ZHANG Jie, LIU Yong-sheng. The Application Prospects of Ovine Adenovirus287 Vector[J]. China Biotechnology, 2011, 31(03): 101-106.
[7] JIANG Na, WANG Yan-Chun, MA Zhi-Hong, LUO Lin, LIU Chun-Jie. A Novel Temperatrue Sensitive Plasmid-based Method for Deletion of Chromosomal Genes[J]. China Biotechnology, 2010, 30(03): 85-89.
[8] YAN Ji-Ai, ZHANG Xue, ZHANG Yun, ZUO Dian-Guang, CHEN Ning, WEN Ting-Yi. Construction of Genetic Engineering Strains for L-threonine Production by Red Recombination[J]. China Biotechnology, 2010, 30(03): 79-84.
[9] . Construction of rabbit Hypoxanthine guanine phosphoribosyl transferase gene-targeting vector by Red homologous recombination System[J]. China Biotechnology, 2008, 28(9): 68-76.
[10] . Advances of Red Recombination System in Escherichia coli Gene Modification[J]. China Biotechnology, 2008, 28(12): 89-93.