Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 87-91    DOI: 10.13523/j.cb.20140512
    
Self-assembly Mechanism and Biological Applications of Smart Peptides
SHEN Ting-ting, ZHANG Guang-ya
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Download: HTML   PDF(492KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Stimuli-responsive peptides are referred as "smart" peptides capable of self-assembling into supramolecular structures that are responsive to environment changes. Such kinds of smart peptides can self-assemble spontaneously, so they are also called self-assembling peptides. Based on their property, smart peptides can be used as building blocks to construct materials possessing different conformations and biological functions. In this review, we presented the self-assembly mechanism of smart peptides,with a focus on the great potentials of smart peptides in many biological fields, such as biomedical engineering,as well as in energy applications,and bioseparation engineering.



Key wordsSmart peptide      Self-assembled mechanism      Building blocks      Biomaterials      Elastin-like peptides     
Received: 11 March 2014      Published: 25 May 2014
ZTFLH:  Q51  
Cite this article:

SHEN Ting-ting, ZHANG Guang-ya. Self-assembly Mechanism and Biological Applications of Smart Peptides. China Biotechnology, 2014, 34(5): 87-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140512     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/87


[1] Rodriguez-Hernandez J, Chécot F, Gnanou Y, et al. Toward 'smart'nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci, 2005, 30(7): 691-724.

[2] Stephanopoulos N, Ortony J H, Stup S I. Self-assembly for the synthesis of functional biomaterials. Acta Mater, 2013, 61(3): 912-930.

[3] Aida T, Meijer E W, Stupp S I. Functional supramolecular polymers. Science, 2012, 335(6070): 813-817.

[4] 许小丁, 陈昌盛, 陈荆晓, 等. 多肽分子自组装. 中国科学:化学. 2011(02): 221-238. Xu X D, Cheng C S, Chen J X, et al. Molecular self-assembly of peptide. Scientia Sinica Chimica, 2011(02): 221-238.

[5] Zhao X, Zhang S. Designer self-assembling peptide materials. Macromol Biosci, 2007, 7(1): 13-22.

[6] Bokhari M A, Akay G, Zhang S, et al. The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. Biomaterials, 2005, 26(25): 5198-5208.

[7] Zhao X, Pan F, Lu J R. Recent development of peptide self-assembly. Prog Nat Sci, 2008, 18(6): 653-660.

[8] Lu J R, Perumal S, Powers E T, et al. Adsorption of beta-hairpin peptides on the surface of water: a neutron reflection study. J Am Chem Soc, 2003, 125(13): 3751-3757.

[9] Zhang S, Yan L, Altman M, et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials, 1999, 20(13): 1213-1220.

[10] Reches M, Porat Y, Gazit E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem, 2002, 277(38): 35475-35480.

[11] Hong Y, Pritzker M D, Legge R L, et al. Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II. Colloids Surf B Biointerfaces, 2005, 46(3): 152-161.

[12] Cao M, Cao C, Zhang L, et al. Tuning of peptide assembly through force balance adjustment. J Colloid Interface Sci, 2013, 407: 287-295.

[13] Dreher M R, Simnick A J, Fischer K, et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J Am Chem Soc, 2008, 130(2): 687-694.

[14] Osborne J L, Farmer R, Woodhouse K A. Self-assembled elastin-like polypeptide particles. Acta Biomaterialia, 2008, 4(1): 49-57.

[15] Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619): 625-627.

[16] Nam K T, Shelby S A, Choi P H, et al. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater, 2010, 9(5): 454-460.

[17] Reches M, Gazit E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett, 2004, 4(4): 581-585.

[18] Chung W J, Oh J W, Kwak K, et al. Biomimetic self-templating supramolecular structures. Nature, 2011, 478(7369): 364-368.

[19] Lee J H, Lee J H, Lee Y J, et al. Protein/peptide based nanomaterials for energy application. Curr Opin Biotechnol, 2013, 24(4): 599-605.

[20] Chen X, Gerasopoulos K, Guo J, et al. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano, 2010, 4(9): 5366-5372.

[21] Beker P, Rosenman G. Bioinspired nanostructural peptide materials for supercapacitor electrodes. J Mater Res, 2010, 25(08): 1661-1666.

[22] de la Rica R, Matsui H. Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev, 2010, 39(9): 3499-3509.

[23] Korendovych I V, Senes A, Kim Y H, et al. De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. J Am Chem Soc, 2010, 132(44): 15516-15518.

[24] Springer J W, Parkes-Loach P S, Reddy K R, et al. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting. J Am Chem Soc, 2012, 134(10): 4589-4599.

[25] Kim J H, Lee M, Lee J S, et al. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew Chem Int Ed Engl, 2012, 51(2): 517-520.

[26] Holmes T C, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A, 2000, 97(12): 6728-6733.

[27] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684-1688.

[28] Whaley S R, English D S, Hu E L, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000, 405(6787): 665-668.

[29] Kopito R R, Ron D. Conformational disease. Nat Cell Biol, 2000, 2(11): E207-E209.

[30] Russell R J, Fergusom J M, Hough D W, et al. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 resolution. Biochemistry-Us, 1997, 36(33): 9983-9994.

[31] Liu Y, Ye H, Satkunendrarajah K, et al. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater, 2013, 9(9): 8075-8088.

[32] Rochet J C, Lansbury P J. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol, 2000, 10(1): 60-68.

[33] Herrero-Vanrell R, Rincon A C, Alonso M, et al. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release, 2005, 102(1): 113-122.

[34] Bidwell G R, Davis A N, Fokt I, et al. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest New Drugs, 2007, 25(4): 313-326.

[35] Betre H. Controlled Intra-articular Drug Delivery System Based on Thermally Responsive Biopolymers. Duke University, 2005.

[36] Keller K, Friedmann T, Boxman A. The bioseparation needs for tomorrow. Trends Biotechnol, 2001, 19(11): 438-441.

[37] Meyer D E, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol, 1999, 17(11): 1112-1115.

[38] Chilkoti A, Christensen T, MacKay J A. Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr Opin Chem Biol, 2006, 10(6): 652-657.

[39] 付晓平, 王文研, 张光亚. 以类弹性蛋白多肽为标签的表达质粒构建及其用于木聚糖酶的非色谱纯化. 微生物学报, 2012, 52(1): 90-95. Fu X P, Wang W W, Zhang G Y. Construction of an expression vector with elastin-like polypeptide tag to purify xylanase. Acta Microbiologic Sinica, 2012, 52(1): 90-95.

[40] Yu S, Liu Y. Expression and one-step purification of a β-galactosidase by fusion with elastin-like polypetides. Process Biochem, 2012, 47(7): 1108-1114.

[41] 胡凡, 柯涛, 李鑫, 等. 类弹性蛋白ELPs融合表达在抗菌肽分离纯化中的应用. 分子细胞生物学报, 2008, 41(3): 233-237. Hu F, Ke T, Li X, et al. Expression and purification of the antimicrobial polypeptide by fusion with elastin-like polypeptide. Journal of Molecular Cell Biology, 2008, 41(3): 233-237.

[42] Floss D M, Schallau K, Rose-John S, et al. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol, 2010, 28(1): 37-45.

[1] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[2] ZHANG Xiao-min, WANG Shi-yong, LI Gen, ZHAO Hong-bin. The Study of Osteogenic Induction of Type Ⅰ Collagen /Poly(caprolactone)/Attapulgite Composite Scaffold Materials in Vitro[J]. China Biotechnology, 2016, 36(5): 27-33.
[3] WANG De-ping. Analysis of Research and Development on Nano Biomaterials Topics in "Eleventh Five-Year Plan" National High Technology Research and Development Program[J]. China Biotechnology, 2012, 32(10): 135-138.
[4] XIA Song, ZHANG Cheng-wu. Diatom Nanotechnology[J]. China Biotechnology, 2011, 31(5): 126-130.
[5] . Diatom Nanotechnology[J]. China Biotechnology, 2011, 31(05): 0-0.
[6] . Researches and Developments of Nerve Guide Conduits[J]. China Biotechnology, 2007, 27(7): 112-116.